EM Calorimeter Technologies for EIC

Tanja Horn

in collaboration with eRD1 (and many others):

S. Ali, A. Asaturyan, M. Battaglieri, V. Berdnikov, J. Bettane, M. Bondi, A. Celentano, J. Crafts, D.Damenova, R. DeVita, G. Hull, M. Josselin, J. Paez Chavez, I.L. Pegg, M. Purschke, L.Marsicano, C. Munoz-Camacho, P. Musico, H. Mkrtchyan, E. Nguyen, M.Osipenko, E. Rindel, M. Ripani, H. San, A. Somov, S. Stoll, V. Tadevosyan, M.Taiuti, R. Trotta, C. Walton, R. Wang, C. Woody, R-Y. Zhu

A.I. Alikhanyan National Science Laboratory/Yerevan, Catholic University of America, The Vitreous State Laboratory, Institut de Physique Nucleaire d'Orsay/France, Jefferson Laboratory, Brookhaven National Laboratory, Caltech

EM Calorimetry at EIC

Several options including crystals, glass, W/SciFi, Shashlyk, Pb/Sc, PbGI, etc.

EM Calorimeter requirements based on EIC White Paper and eRD1

Regions and Physics Goals

Lepton/backward: EM Cal

 Resolution driven by need to determine (x, Q²) kinematics from scattered electron measurement
 Prefer 1.5%/√E + 0.5%

Ion/backward: EM Cal

- Resolution driven by deep exclusive measurement energy resolution with photon and neutral pion
- Need to separate single-photon from two-photon events
- Prefer 6-7%/ \sqrt{E} and position resolution < 3 mm

Barrel/mid: EM Cal

- Photons and neutral pions from SIDIS and DES in range 1-10 GeV, so absolute energy uncertainty in photon should be 100 MeV
- Leads to order 10%/ \sqrt{E}

Calorimeter Design

Inner EM Cal for for η < -2:

- Good resolution in angle to order 1 degree to distinguish between clusters
- Energy resolution to order (1.5%/√E+0.5%) for measurements of the cluster energy
- Ability to withstand radiation down to at least 2-3 degree with respect to the beam line.

Outer EM Cal for $-2 < \eta < 1$:

- > Energy resolution to $7\%/\sqrt{E}$
- Compact readout without degrading energy resolution
- Readout segmentation depending on angle

Barrel, EM calorimetry

- Compact design as space is limited
- Energy resolution of at least order 10%/√E, and likely better

Electron Endcap EMCAL

- Homogeneous calorimetry with high resolution inner part and more relaxed requirements at larger angles (eRD1)
 - Glass provides a cost effective option in regions where resolution requirements are less stringent
- Benefits from synergies with other projects: Neutral Particle Spectrometer (NPS) and FCAL at JLab, PANDA
 - Resources, prototypes, software development

Technology	Performance (energy resolution)	Estimated number of blocks for EIC	Time needed until mass production	
PbWO ₄ (inner part: 12cm < R < 60cm)	~2%/ \sqrt{E} +0.7% (measured over 3x3)	2500 (2x2x20 cm ³)	Available from two vendors (SICCAS, CRYTUR)	
Glass (DSB:Ce) (outer part: 60cm < R < 120 (130)cm)	TBD	2400-3400 (4x4x40 cm ³)	2-3 years	

Barrel EMCAL

- □ W/SciFi: eRD1 R&D is complete
 - W/Shashlik: R&D to address non-uniformities and improve energy resolution
- Glass-Ceramics (DSB:Ce) alternative, flexible geometries, cost effective
 - R&D includes segmentation and readout out
- □ Existing EMCal, e.g BCAL, PHENIX, etc.

Technology	Performance (energy resolution)	Estimated number of blocks for EIC	Time needed until mass production
W-powder/SciFi with SiPM readout	~16%/√E+3.2% (8x8 tower)		Full industrial scale production available
High-density shashlyk	TBD		2-3 years
Glass (DSB:Ce) (~8cm towers, 95 modules)	TBD	4750 (4x4x40 cm ³)	2-3 years
PbSc PbGI	~8%/√E+2.1% ~6%/√E+0.8%	15552 (5.5x5.5x33 cm ³) 9216 (4x4x40 cm ³)	Phenix EMCal
Pb/Sc	~5.4%/√E+2.3%		JLab BCAL

Barrel EMCAL – PHENIX EMCal

West

TF1 PbGlass 51% Pb-Oxide Wrapped with aluminized mylar foil New developed HVbases

10080 modules:

- leadglass blocks (TF1) 4x4x40 cm³
- FEU-84 phototubes
- active HV-bases (Cockcroft-Walton generators)

- 1 Sector = 6x3 Supermodules (SM)
- 1 PbSc SM = 12x12 towers
- PbSc towers: 5.52 x 5.52 x 33 cm³ (18 X₀)
- 15552 blocks total

Barrel EMCAL – PHENIX EMCal

Barrel EMCAL – JLab BCAL

Barrel 390 cm long, 65 cm ID

22.46 cm + 11.77 cm 22.46 cm + 8.51 cm + 8.51 cm + single module

end

- Lead 0.5 mm thick, Scin.fibers 1 mm OD
- 191 layers Pb/Sc/Glue 37/49/14
- 48 modules, both sides readout
- One side: 40 lightguides, 40 SiPMs
- 40 SiPMs \rightarrow 16 fADC250 + 12 F1TDC
- Timing \Rightarrow Z coord $\sigma_Z \approx$ 3 cm
- SiPM (MPPC) 3840 12×12mm²
- 1536ch fADC-250MHz (4 rings) 1152ch F1TDC (3 rings)
- $\sigma_E/E \approx 5.4\%/\sqrt{E} \oplus 2.3\%$

Hadron Endcap EMCAL

Technology	Performance (energy resolution)	Estimated number of blocks for EIC	Time needed until mass production
Glass (DSB:Ce) (20cm < R < 200cm)	TBD	7500 (4x4x40 cm ³)	2-3 years

See Oleg's presentation in this session for more on HCAL

Technologies: Auxiliary Detectors

Examples: Luminosity monitors, low Q² tagger, ZDC

- Much overlap with other groups, e.g, forward detectors
- Discussions about possible concept strategies at the Calorimeter Ad-Hoc Workshop on 6 April 2018 (https://indico.bnl.gov/event/4468/)
 - Very radiation hard detectors ILC FCAL
 - ➢ Si-W ALICE
 - Very radiation resistant PbWO₄ PANDA
 - ➢ Glass (DSB:Ce)

Technology	Performance	Estimated number of channels for EIC
ZDC (50x50cm, granularity ~5cm, ~100 towers?)	TBD	100 towers?
Low Q ² tagger (5 planes GEM?)	TBD	10000?
Luminosity monitors	TBD	

See Forward Detectors/IR integration, lumi, ancillary detectors session

EIC C	alorimeter Workshop
📰 Frida	y 6 Apr 2018, 13:00 \rightarrow 15:00 US/Eastern
Desc	ription To join the Meeting: https://bluejeans.com/446422422
	To join via Room System: Video Conferencing System: bjn.vc -or-199.48.152.152 Meeting ID : 446422422
	To join via phone : 1) Dial: +1.408.740.7256 (United States) +1.888.240.2560 (US Toll Free) +1.408.317.9253 (Alternate number) (see all numbers - http://bluejeans.com/numbers) 2) Enter Conference ID : 446422422
13:00 → 13	10 Introduction and Ongoing Projects ③ 10m Speaker: C. Woody ((BNL))
	EIC_Calorimeter_Wo
13:10 → 13	22 Shashlik Calorimeter Development © 12m Speaker: E. Kistenev (IINL) B Shashlik Developme
13:22 → 13	34 Silicon Calorimetry for EIC @12m Speaker: J. Repond (ANL) B: EIC_Calorimeter_Ph
13:34 → 13	Si-W Calorimetry at ALICE © 12m Speaker: M. van Leeuwen (CERN) C 20180406_FOCAL
13:46 → 14	00 Discussion 🛇 14m
14:00 → 14	12 BaF2 Status and Potential
14:12 → 14	Glass/Ceramics and New Materials O 12m Speaker: I.Pegg/T.Hom (CUA) EIC_Calo_6April201
14:24 → 14	Hadron Calorimetry © 12m Speaker: 0. Tsai (UCLA) ➢ OlegTsal_04062018
14:36 → 14	Very Radiation Hard Forward Detectors for ILC © 12m Speaker: S. Schuwalov (DESY) Radiation hard sens

Crystals in EMCal: PbWO₄

PbWO₄ material of choice for many EMCals – high density, fast response, large and granular solid angle, etc., but also limitations, e.g. hadron radiation damage

PbWO₄ radiation resistance

Crystals in EMCal: PbWO₄

- Another consideration: expensive (\$15-25/cm³) and manufacturing uncertainty
 - Despite progress (work with SICCAS and now also CRYTUR) still a struggle to work with vendors to get reliable PbWO₄ crystals that would be compatible with experiment requirements, e.g. JLab/NPS, EIC EMCal

- Crytur: 100% acceptance, but capacity limited, also raw material availability
- SICCAS: 30-40% rejection, Q&A concerns

Glass Scintillators for Detector Applications

An alternative active calorimeter material that is more cost effective and easier to manufacture than, e.g. crystals

Material/ Parameter	Density (g/cm³)	Rad. Length (cm)	Moliere Radius (cm)	Interact Length (cm)	Refr. Index	Emission peak	Decay time (ns)	Light Yield (γ/MeV)	Rad. Hard. (krad)	Radiation type	Z _{Eff}
(PWO)PbWO ₄	8.30	0.89 0.92	2.00	20.7 18.0	2.20	560 420	50 10	40 240	>1000	.90 scint. .10 Č	75.6
(BaO*2SiO₂):Ce glass	3.7	3.6	2-3	~20		440, 460	22 72 450	>100	10 (no tests >10krad yet)	Scint.	51
(BaO*2SiO ₂):Ce glass loaded with Gd	4.7-5.4	2.2		~20		440, 460	50 86-120 330-400	>100	10 (no tests >10krad vet)	Scint.	58

Also: (BaO*2SiO₂):Ce shows no temperature dependence

Shortcomings of earlier work:

- Macro defects, which can become increasingly acute on scale-up
- Sensitivity to electromagnetic probes

The Vitreous State Laboratory – unique expertise

Premier materials science facility with unique capabilities and expertise in glass R&D

Current R&D program includes

- Nuclear and hazardous waste stabilization
- Glass and ceramic materials development
 - Formulation optimization
 - Characterization
 - Property-composition models
- Materials corrosion and characterization
- Off-gas treatment
- Water treatment, ion exchange
- Cements, flyash
- Geopolymers
- Biophysics
- Nano-materials
- Thermoelectrics
- Spintronics
- Scintillation detectors

The Vitreous State Laboratory – unique facility

Designing, constructing and testing large glass production systems

- VSL Joule Heated Ceramic Melter (JHCM) Systems:
 - The largest array of JHCM test systems in the US
 - The largest JHCM test platform in the US

PILOT SYSTEM SCALE-UP

DM10 and DM100 JHCM Systems at VSL

VSL DM1200 HLW Pilot Melter System

About 400,000 kg glass made from about 1 million kg feed

Glass Scintillator – optical and radiation hardness

- Glass scintillators being developed at VSL/CUA/Scintilex
 - Optical properties comparable or better than $PbWO_4$ \geq
 - Preliminary tests on radiation damage look promising \geq
 - Ongoing optimization work

Scintilex samples

Transmittance

Light Yield

Material/ Parameter	PbWO ₄	Sample 1	Sample 2	Sample 3	Sample 4
Luminescence (nm)	420	440	440	440	440
Relative light output (compared to PbWO ₄)	1	35	16	23	11

Wavelength [nm]

Glass Scintillator – formulation

□ Two main glass formulations for calorimeter application

Nominal: optimized LY, timing, radiation hardness, etc.

Scintillation light

 Very high-density compared to nominal, emits at >550nm, good LY

Glass Scintillator – polishing

Testing and optimizing different methods (specifications on: flatness, roughness, parallelism, perpendicularity)

Method 2

Method 3

SCINTILEX

Progress with scale-up – 2x2x20cm³ samples produced, issues associated with further scale-up identified, solutions are being implemented and tested

Example: SC1 glass

1cm x 1cm x2cm x 2cm x 4cm (medium size)0.5cm (test size)

2cm x 2cm x 20cm (larger size)

1cm x 1cm x 0.5cm

2023

Initial Beam Test Program JLab 2020

- Constructed a 3x3 prototype of geometry representative of NPS and EIC EMCal
- Completed detector checkout and baseline with crystal+PMT, next: glass performance, alternative readout
 - Beam energy provided by pair spectrometer - select electrons going through the center of the middle crystal

Pair Spectrometer (scint tile)

Glass Scintillator – Streaming Readout 2020

- Instrumenting 9 channels to test and optimize the entire readout chain: SiPM, preamps, fADC, and Streaming DAQ system
- Tests in Hall-D with TRIDAS will have 4 configs:
 - 1. (proto-PMT+VTP+fADC 250)
 - 2. (proto-PMT+WB)
 - 3. (protoSIPM+VTP+fADC 250)
 - 4. (proto-SIPM+WB).
- Configs 1-2-4 are ready, config 3 requires preamps+bias boards

Planned test dates: March/April 2020

Glass Scintillator Outlook

□ Finalize optimization of glass composition - patent

□ Larger samples (2x2x20cm³) for full characterization tests

- Transmittance and light yield
- Radiation hardness
- Decay kinetics
- > Other
- Full-size samples (up to 4x4x40cm³) for comparison to PWO

- □ EIC Monte Carlo simulations to:
 - Optimize configuration for electron endcap using ML methods
 - Explore glass and suitable readout for barrel

□ Initial prototype tests in Hall D ongoing – full tests planned for 2021/22

Summary

- Several options for EIC EMCal including crystals, glass, W/SciFi, Shashlyk, Pb/Sc, PbGI, etc.
 - eRD1 has been exploring many of these options
 - Also have existing detectors, e.g. PHENIX EMCAL, JLab BCAL
- Physics requirements are different for each region most stringent in electron endcap
- PbWO₄ crystals are ideal for precision EMCal, e.g. in the electron endcap, but also have limitations – and are expensive
- Glass-based scintillators are cost-effective alternative to crystals, in particular EMCal regions with relaxed resolution requirements – ongoing R&D in eRD1 and through SBIR/STTR
 - Initial small samples produced at CUA/VSL have properties comparable or better than PbWO₄ and are radiation hard
 - > New fabrication method eliminates bubbles, a major problem in earlier work
 - Initial scale-up successful

Glass/crystal – Schedule for TDR 2023

□ What achievements are required for TDR 2023 readiness

- Finalize glass formulation and fabrication method
- Completion of crystal/glass design in simulation
- Validation of performance with prototype

□ How much time do you envision to complete your ongoing project

Item	Task	2019	2020	2021	2022	2023	
			FY20	FY21	FY22	FY23	
Glass fabrication	Composition optimization						
	Characterization						
	Scale up and additional geometries						
	Show uniformity and reproducibility						
	Fabrication process optimization						
	Performance tests with prototype						
	Process design verification to scale up						
	Large scale production study						
Software	Prototype						
	Design options						
	Cost/performance optimization						
Prototype	Base version						
	Initial commissioning						
	Upgrade and commissioning						
Beam test	Beam test						
	Data analysis						

Crystals in EMCal: PbWO₄

- Commissioned a 12 x 12 prototype
- Beam energy provided by tagger hodoscope
- Allows for data over larger energy range and also study of linearity

Preliminary energy resolution for 3x3 cluster: $\sigma(E)/E = 0.7 + 2.2/\sqrt{E} + 2.8/E$

Glass Scintillator – fabrication process and uniformity

Uniformity remains a concern – manufacturing process requires optimization – progress with new method at CUA/VSL/Scintilex

Sample made at CUA/VSL based on previous DSB:Ce work

Samples made at CUA/VSL/Scintilex with our new method

28