Streaming Geant4 Simulations

Project Overview

Opportunities to share enthusiasm/code/ algorithms with existing ongoing efforts

CLAS12 Forward Tagger + Tridas

Beam On Test on an actual detector (CLAS12 Forward Tagger Calorimeter)

16x FADC250 Modules -> VTP -> 2x 10Gbps Ethernet -> PC

Tridas: Write Post Trigger File with continuous "real" analysis

Many Challenges

Scaling to large detector system like CLAS12 or EIC: Hardware & Software challenge.

TCP Transmission, events synchronization with downstream system.

Memory, CPU usage

Streaming Simulations Scope

Data Source - Data Streaming

Continuous DATA Stream

GOAL: Having simulated data that can entirely replace the data source

TCP 10/40GbE

Data Subscribers, Analyzers

Streaming protocols / analysis systems should be transparent to the data source: experiment or simulation

This will help addressing challenges on hardware, communications and software issues.

Streaming Geant4 Simulations Scope

Geant4 Streaming Challenges

And opportunities for collaboration / sharing code and algorithms

- Generators "absolute timing", event time window simulation
- Intrinsic Time-Window of readout electronic
- Voltage vs time signal shape from a "geant4 hit"
- Link between geant4 sensitive identifier and electronic crate/slot/channel
- Geant4 event-centrism

https://www.sciencedirect.com/science/article/pii/S0168900220300279

- Generator absolute timing, event time window simulation.
- beam structure: CLAS12: 124K e- in 250ns window in 4 ns bunches
- generator of events on top of that (middle of time window)

ullet TODO: Library to convert cross section or weight to absolute event time T_{ullet}

https://www.sciencedirect.com/science/article/pii/S0168900220300279

Intrinsic Time-Window of readout electronic.

Geant4 steps are analyzed and grouped based on their timing. This mechanism is used to account for signals pile-up, position of signals in time and more.

Collaboration / Code sharing opportunity:

• Existing: "gtouchable" a library that collects Geant4 steps mimicking electronic time-window.

https://www.sciencedirect.com/science/article/pii/S0168900220300279

Voltage vs time signal shape from a "hit"

Collaboration / Code sharing opportunity:

• Existing but not "general framework": library to convolute g4 steps with user defined function. This is work in progress at JLab.

https://www.sciencedirect.com/science/article/pii/S0168900220300279

• Link between geant4 sensitive identifier and electronic crate/slot/channel.

Collaboration / Code sharing opportunity:

• Existing: "translationTable" a library that links vector<int> (geant4 sensitive ID) to crate/slot/channel.

Simulations Streaming Readout

Getting around event-centrism: streaming buffers of data

- use high level buffer structure, filled from events digitization
- \bullet buffer integration time ΔT variable, typically 10s of μs , collects several geant4 events

each 1 MHz data / crate yields a buffer of 65 hits

SRO AT Crate Buffer
header

slot 1

hit 1, hit 2, hit 3, ...

slot 2

hit 1, hit 2, hit 3, ...

Crate Buffer Structure

Simulations Streaming Readout

getting around event-centrism

Maurizio Ungaro

Simulation Streaming Readout: a HL Buffer

Collaboration / Code sharing opportunity:

Design a define a "high level" buffer structure / protocol

- 1 Buffer / Crate
- 1 Buffer / Board

The buffers contains channels (absolute) time-ordered (either or):

- Wave packets raw data
- Integrated values (for example, mode 7 FADC)

The buffers include the physics / electronic noise, either geant4 produced or merged from actual data.

High Level Buffers

Actual SRO Format Implementation

Actual SRO Network
Protocol

Data Subscribers, Analyzers

experiment specific

experiment specific

Summary: Streaming Readout plans at JLAB:

Short term

- Design and implement high level buffers. Collaboration / synergy highly desirable.
- Use a simple, existing detector geometry and demo buffer stream feasibility by replacing a real small detector source with simulation.

Long term

- Add multiples crates, simultaneous buffers streams. One buffer = 1 file on disk = 1 network stream.
- Support CLAS12 and EIC SRO efforts (actual buffer formats)
- Explore ML to speed up detector response
- Address details such as buffer timing in respect to signal shapes
- Simulate challenges of large scale detectors:
 - → buffer synchronizations issues
 - → network glitches
 - → large amount of data
 - → crate malfunctions

Always:

Explore collaboration / learn from / synergies with ongoing / mature efforts (see Jin Huang talk)