# (Nuclear) fragmentation related measurements for an EIC

Charlotte Van Hulse University College Dublin



March 20, 2020

# Outline

- Studies for an EIC of semi-inclusive lepton-nucleon DIS and collinear fragmentation [E. C. Aschenauer, I. Borsa, R. Sassot, CVH, PRD 99 (2019) 094004]
- Measurements from HERMES on nuclear targets

### Study set up

- Two energy set ups: 5 GeV on 100 GeV and 20 GeV on 250 GeV
- PYTHIA-6 for event simulation
- Integrated luminosity of 10 fb<sup>-1</sup>
- Kinematics: Q<sup>2</sup>>1 GeV<sup>2</sup>; W<sup>2</sup>>10 GeV<sup>2</sup>; 0.01<y<0.95
- Finite detector resolution not considered



## Hadrons

- Particle identification in pseudo-rapidity range  $-3.5 < \eta < 3.5$
- Constraints imposed by particle identification

| rapidity                                  | pion momentum [GeV] | kaon momentum [GeV]                                               | proton momentum [GeV]                                             |
|-------------------------------------------|---------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|
| -3.5 < rapidity < -1.0  (RICH)            | $0.5 < p_H < 5.0$   | $1.6 < p_H < 5.0$                                                 | $3.0 < p_H < 8.0$                                                 |
| $-1.5 < \text{rapidity} < -1.0 \ (dE/dx)$ | $0.2 < p_H < 0.6$   | $0.2 < p_H < 0.6$                                                 | $0.2 < p_H < 1.0$                                                 |
| -1.0 < rapidity < 1.0  (DIRC and  dE/dx)  | $0.2 < p_H < 4.0$   | $\begin{array}{l} 0.2 < p_H < 0.7 \\ 0.8 < p_H < 4.0 \end{array}$ | $\begin{array}{l} 0.2 < p_H < 1.1 \\ 1.5 < p_H < 4.0 \end{array}$ |
| 1.0 < rapidity < 3.5  (RICH)              | $0.5 < p_H < 50.0$  | $1.6 < p_H < 50.0$                                                | $3.0 < p_H < 50.0$                                                |
| $1.0 < \text{rapidity} < 1.5 \ (dE/dx)$   | $0.2 < p_H < 0.6$   | $0.2 < p_H < 0.6$                                                 | $0.2 < p_H < 1.0$                                                 |

• Minimum momentum: 0.5 GeV, imposed by 3 T magnetic field

Magnetic field strength: compromise between loss of low-momentum hadrons and decrease in momentum resolution of high-momentum hadrons (at large rapidities)

### Complementarity in rapidity

0.4 < z < 0.8 and  $0.2 < p_T^H < 0.5$ 



- Low Q<sup>2</sup> at backward rapidity; high Q<sup>2</sup> at forward rapidity
- Fixed Q<sup>2</sup>: low  $x_B$  at backward rapidity; high  $x_B$  at forward rapidity

Need PID at backward, mid and forward rapidity!

## Influence of PID and magnetic field



## Influence of PID and magnetic field



Loss because of PID, but recovered at mid-rapidity

## Influence of PID and magnetic field



Loss because of PID, but recovered at mid-rapidity

#### Covered kinematic region



## Current and target fragmentation



Large coverage in rapidity:

improved separation current and target fragmentation



process  $\gamma^*q \to q$ 

Struck quark: KS=11 or 12, parent particle: KS=21.



Strong  $W^2$  dependence



# 



- current fragmentation
- pion and kaon production
- based on unfolded EIC pseudo-data
- Methodology:
  - generate set of FF replicas according to uncertainty of existing data
  - weights take into account degree of agreement between replica and new EIC data
  - recalculate new FF
  - NLO accuracy
- statistical uncertainties of pseudo-data and PDF uncertainty when reweighing the FFs



Sensitivity coefficients: correlation FF and cross section, scaled with statistical uncertainties





## Impact of EIC data on FFs



Large reduction for kaons, but much more rigid functional form: careful with interpretation of reduced uncertainties, especially for unfavoured FFs!

## Hadronisation in nuclei: results from HERMES

- targets=unpolarised D, Ne, Kr, Xe
- hadrons=charged pions, kaons, protons and antiprotons



# Probing space-time evolution of hadronisation



- Energy loss of parton by medium-induced gluon radiation
- Energy loss of (pre-)hadrons
  - absorption
  - rescattering (small)
- Partonic and hadronic processes: different signature
  - probe space-time evolution of hadron formation
- PDFs modified by nuclear medium

## Multiplicity ratios

• Multiplicities of Ne, Kr, Xe compared to D:

$$R_A^h = \frac{\left(\frac{N^h}{N_{DIS}}\right)_A}{\left(\frac{N^h}{N_{DIS}}\right)_D}$$

- Approximate cancelation of
  - QED radiative effects
  - limited detector acceptance and resolution
- Two-dimensional extraction ( $\boldsymbol{\nu}$ ,z); (P<sub>h⊥</sub>,z)

## Results (*v*,z)



- Increase of 
$$R^h_A$$
 with increasing  ${oldsymbol 
u}$ 



• K<sup>+</sup> (@higher z) flatter

• p large increase of  $R_A^h$  > 1 @ low z

## Results (z, $\nu$ )

17



- Decrease of  $R_A^h$  with increasing z
- @ highest z: hadronic absorption



• K+  $R^h_A$  reaching 1 at low z:  $\pi p \rightarrow K \Lambda$ 

## Results ( $P_{h\perp},z$ )



- Increase of  $R^h_A$  with increasing  $P_{h\perp}$ : • partonic and/or hadronic interactions
- $\pi^{\pm}$  and K+ no broadening @ highest z  $\implies$   $P_{h\perp}$  broadening at partonic level
- Stronger increase of  $R^h_A$  with increasing  $\mathsf{P}_{\mathsf{h}\bot}$  for protons

# Results (z,P<sub>h $\perp$ </sub>)



Eur. Phys. J. A 47 (2011) 113

- Decrease of  $R^h_A\,$  with increasing z, stronger at large  ${\rm P}_{\rm h\perp}$
- +  $\pi^{\!\scriptscriptstyle\pm}$  and K+@ highest z, independent of  $P_{h\perp}$
- Increase of  $R^h_A$  >1 at low z stronger at high  $P_{h\perp}$

# Summary

- EIC has substantial impact on reduction of FF uncertainties
- Large (PID) detector coverage in rapidity necessary:
  - complementarity of rapidity regions in kinematic coverage
  - disentanglement current and target fragmentation
- Impact of limited detector resolution needs to be studied
- Measurements on nuclear targets allow to study hadronisation process: studies for EIC needed