EIC at BNL

 Injector Linac
\square

THE ELECTRON-ION COLLIDER: RELEVANT DOCUMENTS

White Paper (2012)
Accardi et al, arXiv:1212:1701

NSAC Study (2018)

BNL Report (2017)
Aschenauer at el, arXiv:1708.01527

Yellow Paper (2016)
Accardi et al, Eur. Phys. J. A (2016) 52: 268

THE ELECTRON-ION COLLIDER: SCIENTIFIC QUESTIONS

White Paper (2012)
Accardi et al, arXiv:1212:1701

- How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon?
- Where does the saturation of gluon densities set in?
> How does the nuclear environment affect the distribution of quarks and gluons and their interactions in nuclei?

THE ELECTRON-ION COLLIDER @ BNL

OVERARCHING TMD QUESTIONS

THE ELECTRON-ION COLLIDER: KINEMATICS

BNL Report (2017)
Aschenauer at el, arXiv:1708.01527

THE ELECTRON-ION COLLIDER: KINEMATICS

BNL Report (2017)
Aschenauer at el, arXiv:1708.01527

THE ELECTRON-ION COLLIDER: KINEMATICS

BNL Report (2017)
Aschenauer at el, arXiv:1708.01527

THE ELECTRON-ION COLLIDER: KINEMATICS

- SIDIS measurements add two more dimensions: z and P_{T}
> The ranges $\left[z_{\text {min }}, z_{\text {max }}\right],\left[P_{T}\right.$ min,P_{T} max $]$ should be tested in impact studies along side with detector simulations
> TMD factorization has a variable $\mathrm{q}_{\mathrm{T}}=$ $\mathrm{P}_{\mathrm{T}} / \mathrm{z}$ that allows to test applicability of TMD factorization
> It is important that EIC probes transition from TMD to collinear factorization regime. As such EIC is the unique facility to allow for such a study, from $\mathrm{q}_{\mathrm{T}} \ll \mathrm{Q}$ to $\mathrm{q}_{\mathrm{T}} \sim \mathrm{Q}$

THE ELECTRON-ION COLLIDER: KINEMATICS

> Not to understate, the EIC is uniquely shaped to study both current and

target fragmentation regions

THE ELECTRON-ION COLLIDER: TMD MEASUREMENTS

"Golden"
Yellow Paper (2016) Accardi et al, Eur. Phys. J. A (2016) 52: 268
Unpolarised TMD measurements and Sivers function measurements

$$
x_{f}\left(x, k_{T}, S_{T}\right)
$$

- The characteristic dipole deformation due to the Sivers effect
> Visually pleasing and intuitively comprehensive
> No suitable way to visualize the impact was found (by the author of the plot at least)

THE ELECTRON-ION COLLIDER: TMD MEASUREMENTS

"Golden"

Yellow Paper (2016) Accardi et al, Eur. Phys. J. A (2016) 52: 268
Unpolarised TMD measurements and Sivers function measurements

- P_{T} shape of the Sivers function

Scimemi, Vladimirov, arXiv:1912.06532
> Visually pleasing and intuitively comprehensive as a 3D structure
> There is a way to show the impact

THE ELECTRON-ION COLLIDER: TMD MEASUREMENTS

"Golden"

Yellow Paper (2016) Accardi et al, Eur. Phys. J. A (2016) 52: 268
Unpolarised TMD measurements and Sivers function measurements

> First moment of Sivers function
> Visually comprehensive, but 1D
> There is a way to show the impact

THE ELECTRON-ION COLLIDER: TMD MEASUREMENTS

Yellow Paper (2016) Accardi et al, Eur. Phys. J. A (2016) 52: 268

"Silver"

Transversity and tensor charge measurements

Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato arXiv:2002.08384 (2020)
> No plots for EIC (that I found)
> A lot of physics and opportunities for impact study
> Tensor charge is important

DETALLS, PROBLEMS, PLANS

IMPACT STUDY

- Unpolarized cross sections are reliably simulated using Pythia
> There is no polarized SIDIS event generator that includes all correlations
> Current way is reweighing unpolarized events based of extracted parametrizations

Anselmino et al (2009)

> Database of both parametrizations and error estimates is highly needed
> Expertise exists in our and HEP community and other groups, cooperation is needed
> Manpower is needed

IMPACT STUDY

Pseudodata

Impact estimate

YR effort

> Different ways on impact estimate are needed to cross-check
> Many groups should join and cooperate
> Manpower is needed

JAM FITING METHODOLOGY

> Bayesian inference is used

$$
E[\mathcal{O}]=\int d^{n} a \mathcal{P}(\vec{a} \mid d a t a) \mathcal{O}(\vec{a})
$$

> Iterative Monte Carlo is then used to perform the fit
> Large parameter space is sampled
> Data is partitioned in validation and training sets
> Training set is fitted via chi-square minimization
> Posteriors are used to feed the next iterations

Sato et al., P.R. D94 (16) 114004

JAM FITING METHODOLOGY

> Jefferson Lab Angular Momentum Collaboration has developed a robust fitting/reweighting methodology based on Bayesian statistical methods and machine learning algorithms

- Such methodology may prove crucial and essential for our future endeavors in studies of the structure of the nucleon and beyond.
> Expectation value and variance estimates:

$$
E[\mathcal{O}]=\int d^{n} a \mathcal{P}(\vec{a} \mid \text { data }) \mathcal{O}(\vec{a}) \quad V[\mathcal{O}]=\int d^{n} a \mathcal{P}(\vec{a} \mid d a t a)[\mathcal{O}(\vec{a})-E[\mathcal{O}]]^{2}
$$

- Bayes' theorem defines probability density \mathcal{P} as

PROGRESS

> Several groups started working on impact study. Unpolarized cross sections impact study, the data are available from Charlotte Van Hulse, Elke Aschenauer.
> Database is at initial stage, mostly discussions. Some parametrizations are already available:

https://github.com/JeffersonLab/jam3dlib

https://github.com/prokudin/WW-SIDIS

https://github.com/VladimirovAlexey/artemide-public

https://github.com/vbertone/NangaParbat

http://tmdplotter.desy.de

SUGGESTIONS

- Identify benchmark for the impact
- Identify the format for the database, simulations, plots
- Perform the impact/detector study for at least two different energies $\sqrt{s} \simeq 50(\mathrm{GeV})$ and $\sqrt{s} \simeq 100(\mathrm{GeV})$
- Consider two different setups for detectors
- Collaborate closely with other WGs
- Involve more manpower

