

https://www.bnl.gov/eic/science.php

THE ELECTRON-ION COLLIDER: RELEVANT DOCUMENTS

White Paper (2012) Accardi et al, arXiv:1212:1701

Yellow Paper (2016) Accardi et al, Eur. Phys. J. A (2016) 52: 268 <text>

NSAC Study (2018)

PHYSICS GOALS

THE ELECTRON-ION COLLIDER: SCIENTIFIC QUESTIONS

White Paper (2012) Accardi et al, arXiv:1212:1701

How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon?

► Where does the saturation of gluon densities set in?

How does the nuclear environment affect the distribution of quarks and gluons and their interactions in nuclei?

THE ELECTRON-ION COLLIDER @ BNL

Possibility of more than one interaction region

OVERARCHING TMD QUESTIONS

What is the 2D confined transverse motion of quarks and gluons inside a proton? How does the confined motion change along with probing x, Q^2 ?

xp,k_T b_T t

How to identify universal proton structure properties from measured k_T-dependence?

> Can we extract QCD color force responsible for the confined motion?

How is the motion correlated with macroscopic proton properties, as well as microscopic parton properties, such as the spin?

- SIDIS measurements add two more dimensions: z and P_T
- The ranges [z_{min}, z_{max}], [P_{T min}, P_{T max}] should be tested in impact studies along side with detector simulations
- TMD factorization has a variable q_T = P_T/z that allows to test applicability of TMD factorization
 - It is important that EIC probes transition from TMD to collinear factorization regime. As such EIC is the unique facility to allow for such a study, from q_T << Q to q_T ~ Q

low Q2 scattered leptons

Bethe-Heitler photons

for luminosity

BNL Report (2017) Aschenauer at el, arXiv:1708.01527

Not to understate, the EIC is uniquely shaped to study both current and target fragmentation regions

Barrel

particles from nuclear breakup, i.e. neutrons

scattered protons and ions from diffractive reactions

MONEY PLOTS

"Golden"

Yellow Paper (2016) Accardi et al, Eur. Phys. J. A (2016) 52: 268

Unpolarised TMD measurements and Sivers function measurements

 $x \ f_1(x, \ k_T, \ S_T)$

- ► The characteristic dipole deformation due to the Sivers effect
- Visually pleasing and intuitively comprehensive
- ► No suitable way to visualize the impact was found (by the author of the plot at least)

"Golden"

Yellow Paper (2016) Accardi et al, Eur. Phys. J. A (2016) 52: 268

Unpolarised TMD measurements and Sivers function measurements

► P_T shape of the Sivers function

Scimemi, Vladimirov, arXiv:1912.06532

- Visually pleasing and intuitively comprehensive as a 3D structure
- ► There is a way to show the impact

"Golden"

Yellow Paper (2016) Accardi et al, Eur. Phys. J. A (2016) 52: 268

Unpolarised TMD measurements and Sivers function measurements

- First moment of Sivers function
- Visually comprehensive, but 1D
- There is a way to show the impact

Yellow Paper (2016) Accardi et al, Eur. Phys. J. A (2016) 52: 268

"Silver"

Transversity and tensor charge measurements

Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato arXiv:2002.08384 (2020)

- ► No plots for EIC (that I found)
- A lot of physics and opportunities for impact study
- Tensor charge is important

DETAILS, PROBLEMS, PLANS

IMPACT STUDY

- Unpolarized cross sections are reliably simulated using Pythia
- ► There is no polarized SIDIS event generator that includes all correlations
- Current way is reweighing unpolarized events based of extracted parametrizations

- Database of both parametrizations and error estimates is highly needed
- Expertise exists in our and HEP community and other groups, cooperation is needed
- Manpower is needed

IMPACT STUDY

Pseudodata

Impact estimate

- Different ways on impact estimate are needed to cross-check
- Many groups should join and cooperate
- Manpower is needed

JAM FITTING METHODOLOGY

► Bayesian inference is used

$$E[\mathcal{O}] = \int d^n a \mathcal{P}(\vec{a}|data) \mathcal{O}(\vec{a})$$

- Iterative Monte Carlo is then used to perform the fit
- ► Large parameter space is sampled
- Data is partitioned in validation and training sets
- Training set is fitted via chi-square minimization
- Posteriors are used to feed the next iterations

Sato et al., P.R. D94 (16) 114004

JAM FITTING METHODOLOGY

- Jefferson Lab Angular Momentum Collaboration has developed a robust fitting/reweighting methodology based on Bayesian statistical methods and machine learning algorithms
- Such methodology may prove crucial and essential for our future endeavors in studies of the structure of the nucleon and beyond.
- ► Expectation value and variance estimates: $E[\mathcal{O}] = \int d^n a \mathcal{P}(\vec{a}|data) \mathcal{O}(\vec{a}) \qquad V[\mathcal{O}] = \int d^n a \mathcal{P}(\vec{a}|data) [\mathcal{O}(\vec{a}) - E[\mathcal{O}]]^2$
- Bayes' theorem defines probability density \mathcal{P} as

$$\mathcal{P}(\vec{a}|data) = \frac{1}{Z}\mathcal{L}(\vec{a}|data) \ \pi(\vec{a})$$

Evidence Likelihood function Prior
$$Z = \int d^{n}a \ \mathcal{L}(\vec{a}|data) \ \pi(\vec{a}) \ \mathcal{L}(\vec{a}|data) = \exp\left(-\frac{1}{2}\chi^{2}(\vec{a})\right)$$

PROGRESS

- Several groups started working on impact study. Unpolarized cross sections impact study, the data are available from Charlotte Van Hulse, Elke Aschenauer.
- Database is at initial stage, mostly discussions. Some parametrizations are already available:

https://github.com/JeffersonLab/jam3dlib

https://github.com/prokudin/WW-SIDIS

https://github.com/VladimirovAlexey/artemide-public

https://github.com/vbertone/NangaParbat

http://tmdplotter.desy.de

- Identify benchmark for the impact
- Identify the format for the database, simulations, plots
- Perform the impact/detector study for at least two different energies $\sqrt{s} \simeq 50$ (GeV) and $\sqrt{s} \simeq 100$ (GeV)
- Consider two different setups for detectors
- Collaborate closely with other WGs
- Involve more manpower