Update on Detection of SRC nucleons in EIC kinematics

Florian Hauenstein, EIC Workshop 03/19/20

Overview

- EMC-SRC Recap
- Tagged DIS-SRC
- Status of simulations
- Outlook and Summary

EMC Effect in Different Nuclei

B. Schmookler et al. (CLAS collaboration), Nature 566, 354 (2019)

SRC Recap

- Nucleon pairs that are close together in the nucleus
- high relative and lower c.m. momentum compared to the Fermi momentum k_F
- np-dominance

EMC - SRC correlation

B. Schmookler et al. (CLAS collaboration), Nature 566, 354 (2019)

DIS

Quasi-Elastic

EMC - SRC Correlation

• Are high-momentum nucleons responsible for the EMC effect?

``Tagged SRC for medium and heavy ions at EIC" (LDRD1912)

- Feasibility of tagged SRC in DIS
 - Rates
 - Resolution
 - Detector requirements (focus on forward direction)
 - Required beam energies
- Tools
 - GCF-SRC event generator
 - BeAGLE eA event generator
 - g4e Geant4 simulation for EIC
- First step Tagged Quasi-elastic SRC@EIC

BeAGLE - Benchmark eA Generator for LEptoproduction

Mark Baker, E. Aschenauer, J.H. Lee, L. Zheng

Merger of

- PYTHIA 6 (hard interaction)
- Energy loss of partons: PyQM
- Nuclear environment
 - DPMJET
 - nPDF from EPS09
- Nuclear evaporation by
 DPMJET3+FLUKA

https://wiki.bnl.gov/eic/index.php/BeAGLE

GCF-SRCs and BeAGLE

- GCF = Generalized Contact Formalism (A. Schmidt et al., Nature 578, 540 + references)
- GCF-DIS in development
- GCF-Quasielastic (QE) implemented
- (A-2)-system handled by DPMJET3+FLUKA

Old QE Simulation Results

- e+C, 5GeV + 50GeV/nucleon
- $\sqrt{s} = 110 \text{ GeV} \triangleq \text{fixed target P}_e = 537 \text{ GeV}$
- no crossing angle. no intra-nuclear cascading, no FSI
- QE selection: $x_B > 1.2$, 3 GeV² < Q² < 10 GeV² (from simulation)

Old QE Simulation Results (2)

e+C, 5GeV+50GeV/nucleon, √s = 110 GeV, no crossing angle. no intra-nuclear cascading, no FSI, x_B > 1.2, 3 GeV² < Q² < 10 GeV²

- Leading, recoil, evaporation nucleons well separated
- Redo for eRHIC kinematics

Kinematics - Collider and Fixed Target

Target	fixed target P _e [GeV]	sqrt(s) [GeV]	P _e [GeV]	P _p [GeV]	P _p * Z / A [GeV]
d	2931.6	104.9	10	275	137.5
He-4	2950.3	148.4			
C-12	2952.3	257.1			
d	1066.1	63.2	10	100	50
He-4	1072.9	89.5			
C-12	1073.6	155.3			
d	437.3	40.6	10	41	20.5
He-4	440.1	57.4			
C-12	440.4	99.9			

CMS energy constant for GCF and EIC simulation

Simulation Chain

QE Results for e+C, 10x50GeV/nucleon

- Leading and recoil nucleons well separated
- Similar for neutrons and protons

QE Results for e+C, Different Ion momenta

- Good separation for both kinematical settings
- Lower Ion momenta
 - Larger angular spread
 - less forward boost

QE Results e+C and e+D@20.5GeV/Nucleon

- Separation a little worse for e+D than for e+C
- Less CM energy for e+D at same ion momentum

e+C@20.5GeV/Nucleon: Effect of E* in GCF

- Leading and recoil nucleons well separated
- No strong effect

Summary and Outlook

- GCF-QE scripts and simulations ready to go
 - e+D, e+He and e+C
 - 3 Ion momenta (41GeV, 100GeV, 275GeV)
- Recoil and leading nucleons well separated
- Lower ion momenta settings preferred

Near term:

- Study of FSI and intra-nuclear cascading effects via BeAGLE
- GCF-QE events through g4e and EICROOT (A. Jentsch)
 - Distributions on detectors
 - Resolution effects
- Increase statistics

Far term:

- Simulation of GCF-DIS events
- Yellow report section

Back up slides

eRHIC Interaction Point

DIS Rates for High-x

based on super-fast quark yield parametrization, N. Fomin PRL 105, 212502 (2010) (alternative model: J. Freese et al. Phys. Rev. D 99, 114019)

F₂ from N. Fomin Paper and Reimplementation

QE Event Handling Procedure

- GCF-QE output of electrons at fixed target
- Process through BeAGLE and convert to ROOT-file
- Fixed target events to collider events
 - Boost from lab to c.m.s with fixed target kinematics
 - Boost from c.m.s to collider lab with e+C(He,d) (10xP_p*Z) beams
- Add crossing angle (-25mrad)
 - Boost along x-axis with beta = 0.025
 - Rotate along y-axis by 0.025 mrad

QE Simulation Results (no crossing angle)

e + C (5 GeV + 50 GeV)

- Leading, recoil, evaporation nucleons well separated
- Expecting similar separation of evaporation and recoil nucleons for DIS

Note: This results are without FSI and intranuclear cascading