Perspectives on diffractive jet production at the EIC

Michael Klasen

Institute for Theoretical Physics, University of Münster

20 March 2020

Work done in collaboration with G. Kramer and V. Guzey

DFG

BEFÖRDERT VOM Bundesministerium für Bildung und Forschung

Int	rod	uct	ion
	lou	ucu	IOII

Diffraction at HERA

Factorization breaking 000

Diffractive dijets at the EIC 00000

Conclusion O

Introduction

Lessons from HERA:

- Jets provide important information α_s and gluon PDF
- Large fraction of events (10-15%) in DIS are diffractive
- $\mathsf{QCD} + \mathsf{Regge} \ \mathsf{factorization} \to \mathsf{Pomeron} \ \mathsf{PDFs}$

Open issue:

• Factorization breaking: Global or resolved photons only?

New topics:

- First measurement of diffractive nuclear PDFs
- Relation of diffraction to (cold) nuclear effects
- Information on virtual pion cloud in nuclei

Diffraction at HERA •000000 Factorization breaking

Diffractive dijets at the EIC 00000

Conclusion 0

The HERA collider at DESY

P. Newman, M. Wing, Rev. Mod. Phys. 86 (2014) 1037 [1308.3368]

The world's only *he* circular (r) facility (a):

- Only electrons (positrons) on protons, no Run III with nuclei
- Mostly 27.5 on 820 (920) GeV, last months 575 (460) GeV
- Important for F_L (high y, small $x \to BFKL$ dynamics?)

Detectors:

- Two general purpose detectors (H1, ZEUS)
- Microvertex detectors, tracking, calorimeters, muon chambers
- Forward taggers (diffraction, photoproduction, luminosity)

Diffraction at HERA 000000 Factorization breaking

Diffractive dijets at the EIC 00000

Conclusion 0

Fraction of dijet events in DIS and determination of α_s

H1 Coll., Eur. Phys. C65 (2010) 363 [0904.3870]

Diffraction at HERA

Factorization breaking

Diffractive dijets at the EIC 00000 Conclusion

Diffractive dijet photoproduction - direct and resolved

MK, G. Kramer, Mod. Phys. Lett. A23 (2008) 1885 [0806.2269]

- X: Central hadronic system
- ↓: Large rapidity gap
- Y: Forward proton (plus low-lying nucleon resonances)

Diffraction at HERA

Factorization breaking

Diffractive dijets at the EIC 00000 Conclusion O

Diffractive dijet photoproduction - experimental cuts

MK, G. Kramer, Mod. Phys. Lett. A23 (2008) 1885 [0806.2269]

Table 1.	Kinematic	cuts	applied	$_{\rm in}$	$_{\rm the}$	H1
analysis	of diffractive	dijet	photopr	odu	ictio	n.

Table 2. Kinematic cuts applied in the ZEUS analysis of diffractive dijet photoproduction.

165 GeV	<	W	<	$242 {\rm GeV}$	0.2	<	y	<	0.85
		Q^2	<	0.01 GeV^2			Q^2	<	1 GeV^2
		E_T^{jet1}	>	5 GeV			E_T^{jet1}	>	$7.5 \mathrm{GeV}$
		E_T^{jet2}	>	4 GeV			E_{π}^{jet2}	>	6.5 GeV
$^{-1}$	<	$\eta_{lab}^{jet1,2}$	<	2	-1.5	/	njet1,2	1	15
		$x_{I\!\!P}$	<	0.03	-1.0		η_{lab}		1.0
		M _V	~	1.6 GeV			$x_{I\!\!P}$	<	0.025
		101 9		1.0 007			-t	<	5 GeV^2
		-t	<	I GeV-			U		0 001

NB: Dissociative processes increase cross section by $1.15_{-0.08}^{+0.15}$.

Diffraction at HERA

Factorization breaking

Diffractive dijets at the EIC 00000 Conclusion 0

Fraction of diffractive dijet events in photoproduction

H1 Coll., Eur. Phys. J. C70 (2010) 15 [1006.0946]

Diffraction at HERA 0000000

Factorization breaking

Diffractive dijets at the EIC 00000

Conclusion O

Diffractive parton distributions

H1 Coll., Eur. Phys. J. C48 (2006) 715 [hep-ex/0606004] ZEUS Coll., Eur. Phys. J. C38 (2004) 43 [hep-ex/0408009]

Proof of QCD factorization:

[J.C. Collins, Phys. Rev. D57 (1998) 3051]

$$\frac{d^2\sigma}{dx_P dt} = \sum_a \int_x^{x_P} d\xi \sigma_a^{\gamma*}(x, Q^2, \xi) f_a^D(\xi, Q^2; x_P, t)$$

Assumption of Regge factorization:

[Ingelman, Schlein, Phys. Lett. B142 (1985) 256]

$$f_a^D(x, Q^2; x_{I\!\!P}, t) = f_{I\!\!P/P}(x_{I\!\!P}, t) f_{a/I\!\!P}(z_{I\!\!P} = x/x_{I\!\!P}, Q^2)$$

Pomeron flux factor:

$$f_{P/P}(x_P, t) = A_P x_P^{1-2\alpha_P(t)} \exp(B_P t) \quad \text{with} \quad \alpha_P(t) = \alpha_P(0) + \alpha'_P t$$

HERA determinations:

- H1: $B_P = 5.5 \text{ GeV}^{-2}$, $\alpha'_P = 0.06 \text{ GeV}^{-2}$, $\alpha_P(0) = 1.111 \text{ (Fit B)}$
- ZEUS: $B_P = 4.67 \text{ GeV}^{-2}$, $\alpha'_P = 0.25 \text{ GeV}^{-2}$, $\alpha_P(0) = 1.16$

Dijet and open charm production in DIS well described.

Diffraction at HERA

Factorization breaking

Diffractive dijets at the EIC 00000 Conclusion O

Comparison of H1 2006 Fits A and B

H1 Coll., Eur. Phys. J. C48 (2006) 715 [hep-ex/0606004]

9/18

Factorization in diffractive DIS and its breaking in $\bar{p}p$

MK, G. Kramer, Phys. Rev. D80 (2009) 074006 [0908.2531]

- Deep-inelastic scattering: QCD factorization proven (Regge?)
- $ar{p}p$ scattering at 1.8 TeV: Factorization broken by $\sim 1/10$
- Effective diffractive structure function F_{JJ}^D :

$$R(x,\xi,t) \approx \frac{F_{\rm JJ}^{\rm D}(x,Q^2,\xi,t)}{F_{\rm JJ}^{\rm ND}(x,Q^2)} \quad \text{with} \quad F_{\rm JJ}^{\rm ND}(x) = x[g(x) + \frac{4}{9}\sum_i q_i(x)]$$

using GRV 98 LO for F_{JJ}^{ND} .

2-channel eikonal model (14 TeV): 1/20 [V. Khoze et al., EPJC 18 (2000) 167]

Diffraction at HERA

Factorization breaking 000

Diffractive dijets at the EIC 00000 Conclusion O

Factorization breaking in photoproduction

MK, G. Kramer, J. Phys. G31 (2005) 1391 [hep-ph/0506121]

- Photoproduction: Direct (\sim DIS) + resolved (\sim hh) processes
- Factorization breaking: Global or resolved photons only?

Suppression of dir-IS collinear remainder:

$$M(Q^2, R)_{\overline{\mathrm{MS}}} = \left[-\frac{1}{2N_c} P_{q_i \leftarrow \gamma}(z) \ln\left(\frac{M_{\gamma}^2 z}{p_T^{*2}(1-z)}\right) + \frac{Q_i^2}{2} \right] R - \frac{1}{2N_c} P_{q_i \leftarrow \gamma}(z) \ln\left(\frac{p_T^{*2}}{zQ^2 + y_s s}\right)$$

Diffraction at HERA 0000000 Factorization breaking

Diffractive dijets at the EIC 00000

Conclusion

A fresh look at factorization breaking in photoproduction

MK, V. Guzey, Eur. Phys. J. C76 (2016) 467 [1606.01350]

- Soft inelastic photon-proton interactions destroy rapidity gap
- Interaction strength depends on γ components $(\gamma/{\sf VMD}/qar q)$
- Expect $S^2 = 1$ (γ), $S^2 = 0.34$ (VMD), $S^2 = 0.53 0.75$ ($q\bar{q}$)

[A. Kaidalov et al., Eur. Phys. J. C66 (2010) 373]

- Open charm not suppressed ($J/\psi \ll
 ho, \omega, \phi$ in GVMD)
- Linear interpolation from small to large x_γ:

12 / 18

Diffractive photoproduction of dijets at the EIC

V. Guzey, M. Klasen, in preparation

Experimental conditions:

- Electron-proton collisions with 21 GeV \times 100 GeV
- Diffraction: $M_Y < 1.6$ GeV, |t| < 1 GeV², $x_{IP} < 0.03$
- Photoproduction: $Q^2 < 0.1 \text{ GeV}^2$, 0 < y < 1
- Jet definition (\sim H1): Anti- k_T (R = 1), $p_{T1,2} > 5$ (4.5) GeV

Theoretical input:

- Improved Weizsäcker-Williams photon spectrum
- Photon PDFs: GRV HO
- Diffractive PDFs: H1 2006 Fit B. To do: Fit A, ZEUS, nDPDFs.
- Scales: $\mu_R = \mu_F = \bar{p}_T$. To do: Factorization breaking.

Important observables:

$$z_{IP}^{\rm obs} = \frac{p_{T,1} e^{\eta_1} + p_{T,2} e^{\eta_2}}{2x_{IP} E_p} \quad , \quad x_{\gamma}^{\rm obs} = \frac{p_{T,1} e^{-\eta_1} + p_{T,2} e^{-\eta_2}}{2y E_e}$$

Diffraction at HERA 0000000 Factorization breaking

Diffractive dijets at the EIC 0000 Conclusion O

Diffractive photoproduction of dijets at the EIC

V. Guzey, M. Klasen, in preparation

Diffraction at HERA 0000000 Factorization breaking 000

Diffractive dijets at the EIC 00000

Conclusion O

K-factors for diffractive dijet photoproduction

V. Guzey, M. Klasen, in preparation

Diffraction at HERA 0000000 Factorization breaking

Diffractive dijets at the EIC

Conclusion O

Diffractive PDFs in nuclei

L. Frankfurt, V. Guzey, M. Strikman, Phys. Rept. 512 (2012) 255

Defined similarly to those for nucleons:

$$F_{2A}^{D(3)}(x, Q^2, x_{I\!\!P}) = \int_{-1 \, {\rm GeV}^2}^{t {\rm min}} dt \, F_{2A}^{D(4)}(x, Q^2, x_{I\!\!P}, t) = \beta \sum_{j=q,\bar{q},\bar{q},g} \int_{\beta}^1 \frac{dy}{y} C_j(\frac{\beta}{y}, Q^2) f_{j/A}^{D(3)}(y, Q^2, x_{I\!\!P})$$

Beyond IA (a) interactions with many nucleons N (b,c,...):

Use exp. *t*-depend. (B_{diff}), nucl. density $T_A(b) = \int dz \rho_A(b, z)$:

 $\beta f_{j/A}^{D(3)}(\beta, Q^2, x_P) = 4\pi A^2 B_{\text{diff}} \beta f_{j/N}^{D(3)}(\beta, Q^2, x_P) \int d^2 b \left| \int_{-\infty}^{\infty} dz e^{ix_P m_N z} e^{-\frac{A}{2}(1-i\eta)\sigma_{\text{soft}}^j(x, Q^2) \int_z^{\infty} dz' \rho_A(b, z')} \rho_A(b, z) \right|^2$

Regge factorization explicitly broken $(\mathbf{x} = \beta x_{\mathbf{P}})$. Assume small $x_{\mathbf{P}}$:

$$\beta f_{j/A}^{D(3)}(\beta, Q^2, x_{\rm P}) \approx 16\pi B_{\rm diff} \beta f_{j/N}^{D(3)}(\beta, Q^2, x_{\rm P}) \int d^2 \vec{b} \left| \frac{1 - e^{-\frac{A}{2}(1 - i\eta)\sigma_{\rm soft}^j(x, Q^2) T_{\rm A}(b)}}{(1 - i\eta)\sigma_{\rm soft}^j(x, Q^2)} \right|^2$$

Diffraction at HERA 0000000 Factorization breaking

Diffractive dijets at the EIC 0000

Conclusion O

Diffractive nuclear PDFs at the LHC

MK, V. Guzey, JHEP 1604 (2016) 158 [1603.06055]

 $pA \sim pp$, scaled by $(1/2)Z^2(0.7 \text{ fm}/R_A) \approx 350 \rightarrow \text{Consider } AA$. Diffractive nuclear PDFs in the impulse approximation (IA):

 $f_{j/A}^{D(4),\text{IA}}(\beta, Q^2; x_{I\!\!P}, t) = A^2 F_A^2(t) f_{j/N}^{D(4)}(\beta, Q^2; x_{I\!\!P}, t_{\min})$

Shadowing only weakly dependent on flavor j, $\beta = z_P$, Q^2 , x_P :

Use $R \simeq 0.15$. Again question of factorization breaking:

17 / 18

Introductic O Diffraction at HERA 0000000

Factorization breaking 000

Diffractive dijets at the EIC 00000

Conclusion

Conclusion

Lessons learned from HERA:

- Determination of diffractive PDFs in inclusive DIS
- Factorization holds for charm, jets \rightarrow H1 2007 Fit Jets
- Factorization broken in $\gamma p \ (\sim \bar{p}p) \rightarrow \text{Global or VMD}/q\bar{q}?$

Lessons learned from LHC:

- Suppression depends on CMS energy
- UPCs provide access to photoproduction (incl. and diffr.) Perspectives for the EIC:
 - First determination of nuclear diffractive PDFs in DIS
 - Access to gluon through F_L , test of Regge factorization
 - Jet photoproduction important for test of QCD factorization
 - Additional information on diffractive nuclear gluon density
 - Test of leading-twist nuclear shadowing model