Near threshold photoproduction: the $a_2(1320)$, Z_c^+ and other topics

Presented at the 1st EIC Yellow Report Workshop March 19-21, 2020

Spencer Klein, LBNL

- Reggeon exchange
- Near threshold photoproduction
- Charged photoproduction & the structure of exotics*
- Backward photoproduction via baryon exchange & baryon stopping**
- Conclusions

*Work done in collaboration with Ya-Ping Xie **Work done in collaboration with Aaron Stanek

Reggeons in photoproduction

- HERA photoproduction cross-sections well fit by
- $\sigma(W) = XW^{\epsilon} + YW^{-\eta}$
 - W=γp CM energy
- XW[∈]: Pomeron (gluons)
 - $\epsilon \sim > 0.2 \text{meson dependent}$
 - ♦ J^{PC}=0⁺⁺
- *YW*^{-η}: 'Reggeon' (~~qqbar)
 η~~1.5
 - Summed light-quark meson trajectories
 - ~valence quarks
 - Zero for φ, J/ψ, etc.
 - Range of spin/parity
 - Q² dependence power law

Photoproduction & electroproduction model

- Convolution of photon flux from electron with σ(γp->Vp)
 Both depend on Q²
- Weizsacker-Williams photon flux (with non-zero Q²)
- VM cross-sections parameterized from HERA data/theory....
 - Reggeon and Pomeron exchange
 - Q² dependence via a power law from HERA data
- Other cross-sections from theory predictions
- Nuclear targets included with a Glauber calculation
- Vector mesons retain the photon spin
 - For Q² ~ 0, transversely polarized
 - As Q² rises, longitudinal polarization enters
 - Spin-matrix elements quantified with HERA data
- Embodied in eSTARlight code, available at: http://starlight.hepforge.org

EIC photoproduction kinematics

- Maps photon energy onto rapidity
- $k = \frac{M}{2} \exp(y)$
- y=ln(2k/M)
- Reggeon activity strongest at low photon energies
 - Hadron-going direction

SK & M. Lomnitz, Phys. Rev. C99, 015203 (2019)

Near threshold quarkonium production

- Near-threshold quarkonium production is sensitive to new mechanisms (i. e. 3-gluon ^e 10 exchange)
 - GlueX data favors a mixture of 2 & 3 gluon exchange for J/ψ
- Sensitive to nearthreshold resonances
 - P_C⁺(4440) == J/ψ p
 Pentaquark candidate
- Q² dependence?

Ψ (2S) & Y photoproduction at eRHIC

- 18 GeV e⁻ on 275 GeV protons
- σ=1.4 nb (1/6 of σ(J/ψ))
 - 14 million events in 10 fb⁻¹
- 300,000 events with photon energy <50 GeV (target frame)
 - Ψ (2s) threshold region is 3.5 < y < 3.0 for this configuration
 - ~ 2,800 each Ψ(2S)->ee, μμ
- σ(Y(1S))=0.01σ(ψ')
 - 140,000 events/10fb⁻¹
 - ~3,000 each to ee, μμ
 - ~3,000 near-threshold events
 - ~75 each to ee, μμ
 - More central than ψ'

Charged photoproduction and exotics

- Meson trajectories cover a wider range of spin/parity/charge than Pomerons
 - Good for meson spectroscopy, including exotics.
- 2 examples

- a₂⁺(1320) standard qqbar meson. Illustrates Reggeon phenomenology & kinematics.
 - + Large branching ratio to $\pi^+\pi^-\pi^+$
 - Easy to reconstruct
- ♦ Z_c⁺(4430) exotic
 - Well established at Belle & LHCb
 - likely a tetraquark, molecular molecule or ???
 - Easy to reconstruct via J/ψπ⁺, ψ(2S)π⁺
 - Photoproduction probes structure, quantum numbers
- p->n, so little/no coherent nuclear enhancement, and target breaks up
- These examples are also relevant for neutral final states

7

Cross section of charged particles in photoproduction process

- Use data or calculations of σ(γp->X+n) as input to eSTARlight to predict dσ/dy for the same process in EIC collisions.
 - > Use the same Q² scaling as the ρ (for the a₂) and J/_v (for the Z_c)

a₂⁺(1320) and Z_c⁺(4430) production in ep collisions at proposed EICs

- The a₂⁺(1320) is mainly at negative rapidity
 - σ is large
 - ~80 nb at eRHIC
- The Z_c⁺(4430) is also at negative rapidity, but, because of its mass, is somewhat more centrally produced.
 - $\bullet \sigma$ is moderate
 - 0.26 nb at eRHIC

Expected event rate for vector mesons, $a_2^+(1320)$ and Z_C^+

- Total cross sections and expected events for vector mesons and two charged particles in ep collisions
 - ♦ 10 fb⁻¹ integrated luminosity

	Events ($0 < Q^2 < 1.0 GeV^2$)			Events $(Q^2 > 1.0 GeV^2)$				
	ρ	ϕ	J/ψ	ψ'	ρ	ϕ	J/ψ	ψ'
eRHIC -ep	$50~{ m giga}$	$2.3 { m ~giga}$	85 mega	14 mega	140 mega	$17 \mathrm{mega}$	$5.7 \mathrm{mega}$	1.2 mega
eRHIC -eA	44 giga	2.8 mega	100 mega	16 mega	$37 \mathrm{mega}$	5.6 mega	3.9 mega	960 kilo
JLEIC -ep	$37~{ m giga}$	1.6 giga	39 mega	6.0 mega	$100.0~{\rm mega}$	12.0 mega	$2.7 \mathrm{mega}$	550 kilo
JLEIC -eA	$28 \mathrm{giga}$	$1.6 \mathrm{giga}$	28 mega	3.9 mega	22 mega	3.2 mega	1.2 mega	250 kilo
LheC -ep	100 giga	$5.6~{ m giga}$	470 mega	78 mega	260 mega	37 mega	29 mega	6.3 mega
LHeC -eA	110 giga	$8.2~{ m giga}$	720 mega	140 mega	100 mega	16 mega	27 mega	7.2 mega

	Events $(0 < Q^2 < 1.0 \text{GeV}^2)$				Events $(1.0 \text{GeV}^2 < \text{Q}^2 < 5.0 \text{GeV}^2)$			
	eRHIC	JLEIC	LHeC	EicC	\mathbf{eRHIC}	JLEIC	LHeC	EicC
$a_2^+(1320)$	$0.79 \mathrm{giga}$	$0.69 \mathrm{giga}$	1.06 giga	0.47 giga	5.1 mega	5.0 mega	5.2 mega	4.0 mega
$Z_{c}^{+}(4430)$	2.6 mega	$2.2 \mathrm{mega}$	3.6 mega	$0.94~\mathrm{mega}$	0.12 mega	$0.12 \mathrm{mega}$	0.12 mega	68.0 kilo

Reggeon exchange conclusions

- Reggeon exchange can probe a wide variety of final states with different spins and parities, including charged final states.
- Rates are high for light-quark mesons. The outgoing electron tags the photon, so missing-mass techniques can be used, allowing the study of wide range of final states, for meson classification and spectroscopy.
- Rates are also attractive for c cbar mesons, including exotics. An EIC can study the XYZ states, including charged states. Photoproduction cross-sections are an important clue to their structure and spin.
- b-bbar quarkonium is also accessible.
- These studies require good instrumentation in the hadrongoing direction.

Baryon exchange trajectories

- There is clear evidence, from both old fixed-target experiments, and from Jefferson Lab, that photoproduction can also occur via baryon $\frac{\gamma}{\gamma}$ exchange.
- Normally, photoproduction is maximal when t (momentum transfer from target) is small
 - dσ/dt ~ exp(-Bt)
 - B~ hbar/target size
- In baryon exchange, in the CM frame, the meson scatters backward 180 degrees causing the baryon to recoil
 - In CM frame, baryon and photon/meson trade momentum
 - Mandelstam u is small, but t is large (t>Q²)
- How does an intact baryon recoil at high energies? Thanks to Bill Li (William & Mary) for inspiration and discussion.

ω

 $(\mathbf{0})$

$\pi^+p \rightarrow \pi^+p$ elastic scattering

- 5.9 GeV < E_{π} < 13.7 GeV
 - Above the resonance region
- Clear peak near u=0
 - Elastic scattering in the backward direction
- Diffractive minima visible in uspectrum

Looks a lot like a form factor

γp->π⁺n

- Data from multiple experiments
 Data exists for 4 GeV < E_γ < 16 GeV
 - Again, above the resonance region

M. Guidal et al., Phys. Lett. B400, 6 (1997).

γ**p ->** ω**p+** ρ**p**

Electroproduction data from Clas 6 at Jlab

Forward & backward interactions are soft; intermediate is hard

 $\gamma^* + p \rightarrow p + \omega$, W=2.47 GeV, $Q^2 = 2.35 \text{ GeV}^2$

Theoretical approach - I

GPD-like model, with Transition Distribution Amplitude quantifying baryon trajectories.

Diagram from K. Park et al., Phys. Lett. B780, 340 (2018)

Theoretical approach II – Baryon trajectories

- For baryonic Regge trajectory
 - $\sigma(W) = XW^{\epsilon} + YW^{-\eta}$
 - Replace t with u, and much familiar behavior is restored.
 - Similar to meson trajectories
- Key trajectories: N, Δ ,

• Λ/Σ for strangeness (not today)

Parameterization of backward γp -> ωp

- o is best studied backward photoproduction case
 - Fit to data from two experiments (see backup), after selection
- Follow approach used for vector meson dominance production:
 - $d\sigma/dt|_{t=0} \sim A (s/1GeV)^B$ embodies physics of reaction
 - $d\sigma/dt \sim exp(-Ct)$ accounts for form factor (size) of target
 - Swap u for t, to match behavior of backward kinematics
- $d\sigma/du|_{u\sim 0} = A (s/1GeV)^B$
 - A = 4.4 μb/GeV²
 - A=180 μb/GeV² for forward ω photoproduction
 - ◆ B = -2.7
 - + B=-1.92 for forward ω photoproduction
- dσ/du ~ exp(-Cu), with C=-21 GeV⁻²
 - Similar slope as C in e^{Ct} term for forward γp -> ρp
- Rate is few % of the forward rate for k~ GeV
 - Falls off a bit faster with increasing energy.
 - Cross-sections are large enough to be easily accessible.

Implications for EICs

- First simulations done for ultra-peripheral collisions. UPC reactions create ω at near-beam rapidity, and a mid-rapidity proton
- Similar expectations at an EIC. Need to detect vector mesons with rapidity <~ beam rapidity.

ω z-rapidity after collision

Need to instrument far-forward hadron going direction

Implications for baryon stopping

- Conventional wisdom: Regge phenomenology only matters at low energy
 - But... the relevant energy is the dipole-baryon CM energy.
 - soft dipole -> small CM energy.
 - Low-energy UPC photon
 - + A soft virtual π

- A low-x q-qbar dipole
- Other configuration within an incident nucleus
- The baryon recoils but remains intact
 - Transport over multiple units in rapidity.
 - Like baryon stopping.
 - Phenomenology is very reminiscent of the baryon junction model.
 - Are there connections?

Vance, Gyulassy and Wang, Phys. Lett. B443, 45 (1998)

Conclusions

Many interesting QCD phenomena appear in photoproduction relatively near the kinematic threshold.

- 3-gluon exchange & exotic production mechanisms for heavy quarkonium
- Photon-Reggeon fusion, to conventional and exotic mesons.
- Baryon exchange channels, with large shifts in baryon rapidity.
 - The phenomenology is similar to baryon stopping in heavy-ion collisions.
 - Ala the baryon junction model.

- The signature of these phenomena are predominantly in the hadron-going direction at an ep/eA collider.
 - The forward region is particularly important.

Ψ (2S)->ee lepton pseudorapidities

- Lepton pseudorapidity depends on Y(2S) rapidity, p_T and polarization (which depends on Q²)
- Leptons from most near-threshold (k<50 GeV target frame) ψ(2S)->ll decays have -5<y<-2
 - Good acceptance required in hadron-going direction
 - N.b. Br(ψ (s)->ee or $\mu\mu$ is 0.7%. Plus J/ $\psi\pi^+\pi^-$
- Rates for Y(1S) smaller - usable.
- Higher ψ states accessible

23

Angular definitions

V rest frame

Rapidity vs. Q²

γ**p->**ω**p** data

TABLE I. The compiled data. Errors on original data were				
around 25% of the listed value. Error due to transcription				
from figure is estimated to be less than 5%.				

E_{γ}	$d\sigma/du(u \approx 0)$	Source
GeV	nb/GeV^2	
2.9	200	Sibirtsev et al. ⁶ Figure 1
3.0	300	Clifft et al. ⁴ Figure 3
3.0	200	Sibirtsev et al. ⁶ Figure 7
3.2	240	Clifft et al. ⁴ Figure 3
3.3	110	Sibirtsev et al. ⁶ Figure 7
3.5	170	Clifft et al. ⁴ Figure 2
3.5	170	Sibirtsev et al. ⁶ Figure 1
3.5	100	Sibirtsev et al. ⁶ Figure 7
3.6	210	Clifft et al. ⁴ Figure 3
3.6	100	Sibirtsev et al. ⁶ Figure 7
3.8	90	Clifft et al. ⁴ Figure 3
3.9	60	Sibirtsev et al. ⁶ Figure 7
4.0	150	Clifft et al. ⁴ Figure 3
4.1	70	Sibirtsev et al. ⁶ Figure 7
4.2	160	Clifft et al. ⁴ Figure 3
4.3	40	Sibirtsev et al. ⁶ Figure 7
4.4	120	Clifft et al. ⁴ Figure 3
4.4	30	Sibirtsev et al. ⁶ Figure 7
4.5	50	Sibirtsev et al. ⁶ Figure 7
4.6	30	Sibirtsev et al. ⁶ Figure 7
4.7	75	Clifft et al. ⁴ Figure 2
4.7	80	Sibirtsev et al. ⁶ Figure 1
4.8	100	Clifft et al. ⁴ Figure 3

⁴R. Clifft *et al.*, Physics Letters **72B**, 144 (1977).
⁵B.-G. Yu and K.-J. Kong, Physical Review D **99** (2019).
⁶R. Sibirtsev *et al.*, arXiv:nucl-th/0202083v1 (2002).