Forward gaseous RICH performance in the EIC-sPHENIX solenoid fringe field

Jin Huang (BNL)

sPHENIX and sPHENIX-EIC concept

sPHENIX detector (start 2023)

- Under construction @ RHIC 8'clock
- Tracking, full calorimetry in central
- Former BaBar super conducting magnet

EIC-sPHENIX concept

- One possible way to augment sPHENIX→EIC
- 2014 concept: arXiv:1402.1209 [nucl-ex]
- 2018 update: Note <u>sPH-cQCD-2018-001</u>
- New innovative use of sPHENIX in EIC YR?

sPHENIX-EIC concept

2014 concept: arXiv:1402.1209 [nucl-ex], 2018 update: sPH-cQCD-2018-001

BROOKHAVEN NATIONAL LABORATORY

sPHENIX (former BaBar) SC magnet

- History
 - Built by Ansaldo → SLAC ~1999 → BNL Feb 2015
 - Nominal field: 1.4-1.5T
 - Radius : 140-173 cm; Length: 385 cm
- Field calculation and yoke tuning
 - Three field calculator cross checked: POISSION, FEM and OPERA. Default loading for sPHENIX-EIC simulations
 - With sPHENIX field return, detailed 3D map is also available
- Benefit to EIC tracking
 - Designed for homogeneous B-field in central tracking
 - Longer field volume for forward tracking
 - Higher current density at end of the magnet -> better forward bending
 - Work well with RICH in forward yoke

Full current test February 2018 @ BNL

Considerations for yoke and tracking designs

Optimal tracking configurations

Measure sagitta with vertex – optimal sagitta plane (not drawn) – last tracking station

Constant current

density, same

total current

 $^\circ$ Yoke after tracking space and conform with a $|z|{<}4.5m$ limit

sPHENIX-EIC concept:

- Central + forward yoke (hadron calo.)
- Last tracking station at z=3.0m

Forward tracking optimization

Using ϕ segmented GEM with resolution of R $\Delta \phi$ = 50 μ m

Magnetic bending Track of η=2.0, p=30 GeV

Tracker layout for max sensitivity Track of p=30 GeV

Detectors use/sensitive to magnetic field Tracking and Cherenkov detectors

HBD-GEM gas **RICH**

- Thin readout with CsI-coated Q-GEM
- Magnetic field resistant
- No gas window needed (UV photon)

Reverse Bias primary-e HΛ photo-e **Csl layer** GEM stack

IEEE Trans.Nucl.Sci. 62 (2015) no.6, 3256-3264

(cm) n= പ **RICH** Gas 150 **Charged** particle Volume (CF₄) Courtesy : EIC eRD6 TRACKING & PID CONSORTIUM PionRadius 458 Entries Fermilab T-1037 data 32 GeV Beam Momentum Mean 3.251e+04 RMS 1325 Pion 100 **Focal plane** Kaon η=2 spherical **HBD** detector 50 mirror **η=3** Entrance center Proton Window n=4 20000 25000 20000 25000 40000 45000 50000 50 100 150 200 250 300 Ring size (A.U.) Z (cm)₈ Jin Huang <ihuang@bnl.gov> 1st EIC YR Workshop

NATIONAL LABORATORY

15000

140

120 100

80

60

40

Field effect - distortion for RICH

Now: new field return for sPHENIX and sPHENIX-EIC concept

- After arXiv:1402.1209, field return and HCal design for sPHENIX was updated
 - [sPHENIX CDR]: <u>https://indico.bnl.gov/event/6145/</u>
- Updated field map and conceptual EIC layout: <u>sPH-cQCD-2018-001</u>
 - Using Hcal to return field at the same location as the sPHENIX field return door
 - Field map : <u>https://github.com/sPHENIX-Collaboration/calibrations/tree/master/Field/Map</u>

Zoom into gas RICH region

- In gas RICH region, track still align mostly along the field line → Small bending
- Larger bending field in low-eta, but max EIC collision track momentum is lower too
- More quantitative next page

Quantitative bending

Summary

- sPHENIX under construction and are used as basis for an EIC detector concepts:
 - 2014 concept: arXiv:1402.1209 [nucl-ex]
 - 2018 update: <u>sPH-cQCD-2018-001</u>
 - Innovative concepts from YR studies welcomed!
- sPHENIX-EIC concept shows one way to use a 1-m CF4 gas RICH in fringe magnetic field region, integrated to a full detector design
 - The field line is mostly aligned with high-p tracks in RICH and the bending effect is small in both 2014 and the 2018 updated sPHENIX field map
- Open source code and field map
 - The source code used here: <u>https://github.com/sPHENIX-</u> <u>Collaboration/analysis/blob/master/ForwardTracking/macros/ePHENIXFieldRICH.m</u>
 - The field map: https://github.com/sPHENIX-Collaboration/calibrations/tree/master/Field/Map

Jin Huang <jhuang@bnl.gov>

Extra Information

Jin Huang <jhuang@bnl.gov> 1st EIC YR V

Tracking system

- Good momentum resolution over wide range, -3<η<+4
- GEM tracker for forward region
 - $d(r\phi) = 100 \ \mu m$; 50 μm for very forward region
- GEM-based TPC for barrel region
 - \circ ~ 10 μs max drift time and no-gate needed
 - Thin support structure, e.g. fibre-reinforced polymer

Field effect - TPC drift effect and Correction

- Ideally, magnetic field along z axis for TPCs. $B_{\chi/\gamma}$ terms \rightarrow corrections
- Field map can reach quoted uniformity for Babar (±3% for central tracking volume) by some tuning on the yoke
- Residual distortion on Rφ should be calibrated and corrected in Reco.

Forward tracking optimization

Using ϕ segmented GEM with resolution of R $\Delta \phi$ = 50 μ m

Magnetic bending Track of η=2.0, p=30 GeV

Tracker layout for max sensitivity Track of p=30 GeV

Geant Tracking resolution – 1<η<3

dp/p ~ (Multiple scattering term) + (Tracker resolution term)*p

Tracker resolution term,

1< η <2.5: d(Sagitta₂) = 120µm for 100 µm tracker resolution 2.5< η <4: d(Sagitta₂) = 60µm for 50 µm tracker resolution

Multiple scattering term Displayed without RICH

- With RICH tank (2/3 of tracks): ~20% (rel.) worse
- With RICH tank + Readout (1/3 of tracks): ~50% (rel.) worse

Geant Tracking resolution – 3<η<4

Using vertex as first tracking station

dp/p ~ (Multiple scattering term) + (Tracker resolution term)*p

Tracker resolution term 2.5< η <4: d(Sagitta₂) = 60 μ m for 50 μ m tracker resolution

Without RICH

- 20% worse with RICH tank
- RICH readout is away from this region

Confirmed this study by BNL EIC task force using Kalman filter

- Evaluated using ElCroot by EIC taskforce using ePHENIX tracking bare-bone setup and field
- Consistent with my study in general

Field effect -

distortion for RICH

- Field calculated numerically with field return
- Field lines mostly parallel to tracks in the RICH volume with the yoke
- We can estimate the effect through field simulations

RICH

200

300

EMCa

400

A RICH Ring:

Photon distribution due to tracking bending only

DAUUNIAL LABORATOR

Field effect – Radius uncertianty of RICH Ring

Quantify ring radius error

In the respect of PID: minor effect

Summary

- ePHENIX field design is based on BaBar coil
 - Benefit for forward tracking
 - Ownership officially transferred to BNL
- Yoke designed around the coil
 - Optimizing tracking resolution
 - Reducing field effect in RICH and TPC
 - Use iron-scintillator sample calorimeter as majority part of return yoke
- Detector performance studied with numerical field calculation
 - Tracking resolution : Good enough for ePHENIX physics
 - Field distortion to gas RICH is minor
 - Field distortion for TPC can be calibrated corrected

