Magnetic Field Strength and Tracking Resolutions

Nick Lukow March 20, 2020 1st Yellow Report Meeting Temple University

Detector - BeAST

All "naïve" default resolution parameters*

Detectors:

- Silicon Vertex Tracker $5.8 \ \mu m \times 5.8 \ \mu m$ resolution **Forward Silicon Trackers** $5.8 \ \mu m \times 5.8 \ \mu m$ resolution TPC Intrinsic longitudinal resolution: 500 μm • Intrinsic transverse resolution: 200 μm ٠ Longitudinal dispersion: $1 \mu m / \sqrt{D[cm]}$ ٠ Transverse dispersion: $15 \, \mu m / \sqrt{D[cm]}$ • Vertical pad size: 0.5 cm **Forward Gem Trackers** $50 \ \mu m \times 50 \ \mu m$ resolution **Far Forward Gem Trackers**
 - Far Forward Gem Trackers
 - $100 \ \mu m \times 100 \ \mu m$ resolution

* Can be updated to more realistic parameters

Details

Simulations were performed in EICRoot.

1000 pions were thrown at $\eta = \{0, 1, 3\}$ and $p = \{1, 10, 25, 50\}$ GeV

This was done for magnetic fields of {1.0, 1.5, 2.0, 2.5, 3.0} Tesla

The tracks were reconstructed, and the reconstructed momentum was compared to the actual momentum of the generated track.

Distributions of $\frac{(p_{Reconstructed} - p_{Monte Carlo})}{p_{Monte Carlo}}$ are made, and the standard deviation is taken as the momentum resolution.

$rac{\sigma_p}{p} \ oldsymbol{vs} \ oldsymbol{B}$ for Constant $oldsymbol{p}$

$\sigma_{\theta} vs p$ for Different Values of B

Mid-rapidity theta resolution appears relatively independent of the field strength

Summary

- These studies are still in early stages
 - Can be improved with more statistics
 - Edit detector parameters to more realistic values
- Going forward we will produce acceptance, momentum resolution and angular resolution parameterizations for a number of well-defined detector configurations, which can then be used in smearing generators.