Compton polarimetry for EIC

Alexandre Camsonne

JLab

Zhengqiao Zhang

BNL

Yellow Book Polarimetry Workshop

March 19th 2020

Outline

- eRHIC beam parameters
- Polarized Compton effect
- EIC challenges for polarimeter
- Possible locations
- Compton and background rates
- General requirements
- Photon source
- HERA Polarimeter
- Electron detector
- Photon detector
- IR6
- To do list
- Conclusion

eRHIC

High luminosity polarized electrons on polarized and unpolarized ions For electron beam asymmetry measurements polarization can be the dominating error. Aiming for 1% or better electron polarization accuracy

Main Parameters eRHIC ring-ring for Maximum Luminosity

		No Hadro	n Cooling	Strong Hadron Cooling		
Parameter	Units	Protons	Electrons	Protons	Electrons	
Center of Mass Energy	GeV	10	00	100		
Beam Energy	GeV	275	10	275	10	
Particles/bunch	10 ¹⁰	11.6	31	5.6	15.1	
Beam Current	mA	456	1253	920	2480	
Number of Bunches		330		1320		
Hor. Emittance	nm	17.6	24.4	8.3	24.4	
Vertical Emittance	nm	6.76	3.5	3.1	1.7	
β_{x^*}	cm	94	62	47	16	
β _y *	cm	4.2	7.3	2.1	3.7	
σ [,] *	mrad	0.137	0.2	0.13	0.39	
σ _γ '*	mrad	0.401	0.22	0.38	0.21	
Beam-Beam ξ _x		0.014	0.084	0.012	0.047	
Beam-Beam ξ _y		0.0048	0.075	0.0043	0.084	
τ_{IBS} long/hor	hours	10/8	-	4.4/2.0	-	
Synchr. Rad Power	MW	-	6.5	-	10	
Bunch Length	cm	7	0.3	3.5	0.3	
Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.	29	1.21		

 $E_{p} = 275 \text{ GeV}, E_{e} = 10 \text{ GeV}$

New eRHIC ring ring design : beam interaction frequency going from initial RHIC 10 MHz to 30 MHz with 330 bunches and 100 MHz with 1320 bunches in a 3.8 km ring

Polarized Compton effect

Polarized Compton process

Compton crossection for longitudinally polarized 20 GeV electrons on 2.33 eV photons

Compton crossection for transversally polarized electrons

Challenges at EIC

- Large beam current (2.4 A vs 200 uA at JLab)
 - Wakefield power deposit by beam can be significant
 - Synchrotron radiation (more severe than JLab)
 - Background
 - Bremstrahlung
 - Halo
 - Detector radiation hardness
 - Bunch by bunch measurement : detector response better than 10 ns (33 ns) or high segmentation

IR12 layout

IR12 layout

- The interaction portion of Compton scattering is at in IR12, just between the first DB23 and QD12;
- The entrance window of laser is near QF11 and the exit window is near QF13;
- The laser would go through five magnets from QF13 to QF11;
- The scattered photons can't pass through the magnets if the inner radius is too small;

IR12 layout

Compton Electron Detector Rates

Joshua Hoskins

- 10 W
- 1 A of beam
- Green laser
- Compton and Bremstrahlung assuming 10⁻⁹ Torr
- Corresponding radiation dose for signal and background
 (typical silicon SNR divided by 2 after 1 Mrad
 No change for diamond after 2 Mrad from Qweak)

20 krad/hour about 15 Mrad per month : 100 Mrad desired

General detector requirements

- Need to measure both longitudinal and transverse components
- requires highly segmented pre-shower and ECal with good energy resolution for gamma
- highly segmented ECal with good energy resolution and position resolution for recoil electron
- Need to measure bunch-by-bunch polarization
- The measurement precision should be less than 1%
- Compton scattering polarimeter in storage ring (non-interceptive)
- Radiation hardness : Compton crossection large and high beam current

Photon source

- Single shot laser :
 - CW lasers up to a few 100 W
 - RF pulsed laser : increase luminosity per bunch
 - Pro
 - Simple
 - Less space
 - Cons
 - Power limited to a few 100 W
- Perot Fabry
 - CW up at 10 kW
 - RF pulse new RD maximum luminosity
 - Pro : highest energy available
 - Cons:
 - More complex system
 - Take more space
- RF pulsed option at subharmonic of beam structure could reduce timing requirements on detector

Electron polarimeter in HERA

Layout of the Longitudinal Polarimeter in the HERA East section.

Beckmann M, Borissov A, Brauksiepe S, et al. The longitudinal polarimeter at HERA[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 479(2-3): 334-348.

4

HERA transverse polarimeter

Electron detector options

- Tracking detector most likely in vacuum
 - Diamond detector : at least 10 Mrad radiation hardess
 - MAPS : good timing resolution, can be highly pixelized, need to determine radiation hardness but better than regular silicon since thinner
 - GEM : detectors if outside from vacuum or in Roman pot
- Most likely need cooling at 1 kW to 100 W level for energy deposited by beam
- Same requirements for calorimeter as photon with caveat needs to be as close to electron beam as possible

Position of Compton electrons

Beam parameters for recoil electron detector: BetaX = 40m; emittanceX = 24nm; SigmaX = 970 um; 15*sigmaX = 1.45 cm;

Diamond detector

- Fast 9 ns pulses
- Radiation hardness better than 2 Mrad
- Need preamplifier close from detector (might be issue for high density pixels)
- Can work in vacuum

MGPDs trackers

- Gaseous detector with separate drift space, amplification and readout
- Cost moderate
- Rather slow / long pulses
- Some R&D for small gap faster detector
- Might be ok with high granularity or low duty cycle of laser
- Radiations hardness mostly depends on total charge deposited in detector
- Most likely works better in atmospheric pressure outside from vacuum

COMPASS Pixelated GEM

HV MAPS

- Pixellized detector MuPix for Mu3e
- 80 um x 80 um x 50 um
- Electronics in integrated with pixel (amplification and readout)
- Being investigated by University of Manitoba
- Timing resolution around 16 ns
- 380 Mrad radiation hardness
- Should work in vacuum
- Might work at low temperature

32x40 pixels Mupix4

Photon detection

• Pair spectrometer

 Segmented calorimeter

• Trackers : GEM or MAPS

Photon detector options

- Need energy resolution and position resolution
- Photon detection
- Most like outside from beamline
- Preradiator
 - Pixellized detector
 - GEM
 - MAPS
- Calorimeter technologies
 - Fast Crystals :
 - PbWO4
 - PbF2
 - Sampling calorimeters (more radiation hard worse energy resolution)
 - Shashlyk
 - SciFi
 - Quartz fiber
 - Photon readout
 - PMT : fine meshed PMT
 - MCP : PMTs
 - APDs

Calorimeter properties

	Density	X_0	R_M	λ_I	Refr.	au	Peak	Light	N _{p.e.} GeV	rad	<u>σΕ</u> F	
Material	g/cm^3	ст	ст	ст	index	ns	λ nm	yield			_	
Crystals												
Nal(TI)**	3.67	2.59	4.5	41.4	1.85	250	410	1.00	10 ⁶	10 ²	$1.5\%/E^{1/4}$	
Csl *	4.53	1.85	3.8	36.5	1.80	30	420	0.05	10 ⁴	10 ⁴	$2.0\%/E^{1/2}$	
CsI(TI)*	4.53	1.85	3.8	36.5	1.80	1200	550	0.40	10 ⁶	10 ³	$1.5\%/E^{1/2}$	
BGO	7.13	1.12	2.4	22.0	2.20	300	480	0.15	10 ⁵	10 ³	$2.\%/E^{1/2}$	
PbWO ₄	8.28	0.89	2.2	22.4	2.30	5/39%	420	0.013	10 ⁴	10 ⁶	$2.0\%/E^{1/2}$	
						15/60% 100/01%	440					
LSO	7.40	1.14	2.3		1.81	40	440	0.7	10 ⁶	10 ⁶	$1.5\%/E^{1/2}$	
PbF ₂	7.77	0.93	2.2		1.82	Cher	Cher	0.001	10 ³	10 ⁶	$3.5\%/E^{1/2}$	
Lead glass												
TF1	3.86	2.74	4.7		1.647	Cher	Cher	0.001	10 ³	10 ³	$5.0\%/E^{1/2}$	
SF-5	4.08	2.54	4.3	21.4	1.673	Cher	Cher	0.001	10 ³	10 ³	$5.0\%/E^{1/2}$	
SF57	5.51	1.54	2.6		1.89	Cher	Cher	0.001	10 ³	10 ³	$5.0\%/E^{1/2}$	
Sampling: lead/scintillator												
SPACAL	5.0	1.6				5	425	0.3	$2\cdot 10^4$	10 ⁶	$6.0\%/E^{1/2}$	
Shashlyk	5.0	1.6				5	425	0.3	10 ³	10 ⁶	$10.\%/E^{1/2}$	
Shashlyk(K)	2.8	3.5	6.0			5	425	0.3	$4 \cdot 10^5$	10 ⁵	$3.5\%/E^{1/2}$	

+ - hygroscopic

New IR6 layout

To do list

- Electron detection
 - Beam pipe / window design : evaluate beam deposit from beam
 - Calorimeter position
 - Is close Electron detector needed ?
 - Backgrounds : synchrotron / Brehmstrahlung
 - Effect of magnet optics on polarization extraction
- Photon detection
 - synchrotron / Brehmstrahlung
 - Effect of resolution on polarization extraction
 - Rates in detector : single / multiphotons, integrated measurement
 - Radiation damage
- Investigate IR6 location

Conclusion

- Location for transverse polarimeter found in IR12
- Detector technologies need to be investigated :
 - Detector response (might need up to 10 ns)
 - Radiation harness to be able to run several months at least
 - Position resolution for transverse polarimetry
 - Energy resolution for transverse and longitudinal polarimetry
- Need to determine IP accuracy with spin rotation
- Potential location at IP being investigates
- More studies on going: beam energy deposit, backgrounds in photon and electron detector