Technical Requirements for Hadron Polarimeters

K. Oleg Eyser Brookhaven National Laboratory

1st Yellow Report Workshop

Polarimetry, Luminosity & Ancillary Detector WG

March 19, 2020

Requirements for an Electron-Ion Collider

- Physics observables
 - High beam polarizations: electrons & protons
- High EIC Luminosity \rightarrow small systematics $\approx 1\%$
- Flexible bunch polarization orientation
- Polarimeter ⇔ polarization in collision
 - Bunch polarization profile in *x*, *y*, *z*
 - Polarization lifetime
 - Polarization per bunch

- Absolute beam polarization
- Polarization decay in store
- Transverse polarization profile
- Longitudinal polarization profile
- Polarization vector in experiment

Rates from Hydrogen Jet Target

- 2017 RHIC data
 - 255 GeV/c proton beams
 - Luminosity leveled
 - $2.2 \cdot 10^{11}$ protons per bunch at injection
 - Bunch spacing: 106 ns
- Includes all events
 - Elastic recoil protons
 - Background
 - (prompt particles etc.)
 - about 2/3 are prompts

Rates from Hydrogen Jet Target

- Electron-Ion Collider
 - Similar bunch intensity
 - Bunch spacing much smaller: $\approx 10 \text{ ns}$
 - Rates increased by more than × 5 (single beam)
- Recoil time-of-flight will be larger than bunch spacing
 - Block readout when bunch is on jet target
 - Veto punch-through particles
 - Loss of certain energy ranges
 - Bunch length will also be smaller

Rates from Hydrogen Jet Target

- Electron-Ion Collider
 - Similar bunch intensity
 - Bunch spacing much smaller: $\approx 10 \text{ ns}$
 - Rates increased by more than × 5 (single beam)
- Recoil time-of-flight will be larger than bunch spacing
 - Block readout when bunch is on jet target
 - Veto punch-through particles
 - Loss of certain energy ranges
 - Bunch length will also be smaller

- Detector location (75 cm) is based on strip pitch and recoil energy
 - possible to reduce blocked time with smaller detectors

Rates from Carbon Targets

- RHIC data
 - Ultra-thin Carbon ribbon targets
 - Rate depends on transverse beam size
 - 2-3% per bunch ($1.6 \cdot 10^{11}$ protons per bunch)
 - $\sigma_{xy} \approx 0.2 \text{ mm}$
- Electron-Ion Collider
 - Rate scales with bunch number and inverse transverse beam size
 - Multiples probability scales with inverse transverse beam size
 - FPGA waveform analysis (next slide)

Rates from Carbon Targets

RHIC data

- Ultra-thin Carbon ribbon targets
- Rate depends on transverse beam size
- 2-3% per bunch ($1.6 \cdot 10^{11}$ protons per bunch)
- $\sigma_{xy} \approx 0.2 \text{ mm}$
- Electron-Ion Collider
 - Rate scales with bunch number and inverse transverse beam size
 - Multiples probability scales with inverse transverse beam size
 - FPGA waveform analysis (next slide)

Waveform Analysis

- Waveform digitizer
 - 1.2 ns per TDC count
 - TDC₀ is determined from the rise of the waveform
 - Linear extrapolation from half-rise point to 0
- Waveform is much longer than bunch spacing
 - Multiples per single bunch crossing is still small
 - Signals from different bunches may overlap
 - Better time resolution (TDC)
 - FPGA analysis of waveforms → streaming DAQ
- High bunch frequency will induce base line shift
 - Track over μs or longer (streaming DAQ)

Polarization Determination

- A_{N,C}(T) is very steep
 - $\Delta T = 25 \ keV \ -> \delta A_N / A_N \approx 5\%$
- Energy calibration with α-particles
 - Thickness of dead layer in front of Si detectors
 - $60 \ \mu g/cm^2 \rightarrow 200 \ keV \pm 10\%$
- Energy loss in target
 - Path length depends on ribbon orientation
 - Multiple scattering in target
 - Sway of ribbon in proton beam
- Target lifetime
 - Material, beam current and RF pickup

- $A_{N,C}(T)$ is very steep
 - $\Delta T = 25 \ keV \ -> \delta A_N / A_N \approx 5\%$
- Energy calibration with *α*-particles
 - Thickness of dead layer in front of Si detectors
 - $60 \,\mu g/cm^2 \rightarrow 200 \,keV \pm 10\%$
- Energy loss in target
 - Path length depends on ribbon orientation
 - Multiple scattering in target
 - Sway of ribbon in proton beam
- Target lifetime
 - Material, beam current and RF pickup

- $A_{N,C}(T)$ is very steep
 - $\Delta T = 25 \ keV \ -> \delta A_N / A_N \approx 5\%$
- Energy calibration with α-particles
 - Thickness of dead layer in front of Si detectors
 - $60 \,\mu g/cm^2 \rightarrow 200 \,keV \pm 10\%$
- Energy loss in target
 - Path length depends on ribbon orientation
 - Multiple scattering in target
 - Sway of ribbon in proton beam
- Target lifetime
 - Material, beam current and RF pickup

θ=90°

7.0 µm

- $A_{N,C}(T)$ is very steep
 - $\Delta T = 25 \ keV \ -> \delta A_N / A_N \approx 5\%$
- Energy calibration with α-particles
 - Thickness of dead layer in front of Si detectors
 - $60 \,\mu g/cm^2 \rightarrow 200 \,keV \pm 10\%$
- Energy loss in target
 - Path length depends on ribbon orientation
 - Multiple scattering in target
 - Sway of ribbon in proton beam
- Target lifetime
 - Material, beam current and RF pickup

Requirements

	Polarized HJET	Unpolarized HJET	Carbon polarimeter	Forward neutrons	
Absolute beam polarization	-		*		(*) Ir (*) <i>A</i>
Polarization decay	*	*	•	+	Duti
Transverse profile	*	*	•		(*) d
Longitudinal profile	+	+	•	*	
Polarization vector	(*)	+	•	+	(*) li dete
Bunch polarization	*	*	-	*	

(*) Increased systematics (*) A_N can be calculated, but needs to be confirmed

(*) depends on the target

(*) limited space for detectors

Summary

- Combination of absolute normalization with fast measurements
 - Time dependent polarization decay
 - Transverse and longitudinal bunch profiles
 - Bunch by bunch polarization
- High luminosity (short bunch spacing)
 - Improvements in detector performance and read-out needed
 - Veto for prompt particles
 - Time resolution of digitization
 - Streaming DAQ
 - Ribbon target material
- Light ion polarimetry
 - Recoil kinematics not much different from protons
 - Asymmetries potentially too small
 - Break-up and background under investigation (simulation)

Elastic Recoil and Background

- p+p at $\sqrt{s} = 21.6$ GeV
- PYTHIA 6.4.28, Tune 320
 - QCD $2 \rightarrow 2$
 - Elastic
 - Diffractive
- Prompt background
 - pions / photons up to a few GeV
 - Kinematic correlation lost

- Planned test with veto detector for charged pions
- Significant background also at low energies
- Problematic for much reduced bunch spacing

Proton Polarimetry at RHIC

≈10 cm

OUTER

Acceleration of Polarized Hadron Beams

Magnetic moment precession in magnetic fields:

- Thomas-BMT equation
- Lorentz force

$$\frac{d\vec{P}}{dt} = -\left(\frac{e}{\gamma m}\right) \left[G\gamma \vec{B}_{\perp} + (1+G)\vec{B}_{\parallel}\right] \times \vec{P}$$

$$\frac{d\vec{v}}{dt} = -\left(\frac{e}{\gamma m}\right)\vec{B} \times \vec{v}$$

STAR

LRLR

+++++

Yellow injection

Blue injection/

G = 1.7928 $\gamma = E/m$ $\nu_{spin} \equiv G\gamma$

• $v_{spin} = n$

• integer *n*

Imperfection resonances

- Intrinsic resonances
 - $v_{spin} = kP + v_y$
 - integer k
 - superdiodicity P
 - vertical betatron tune v_y

