

New ML-based Analysis of Deeply Virtual Exclusive Processes

A.I. for Nuclear Physics Workshop March 4-6, 2020 and EIC 1st YR Meeting March 19, 2020

SIMONETTA LIUTI UNIVERSITY OF VIRGINIA

Burkert, Elouadrhiri, Girod, Nature 557, 396 (2018)

240

• "The average peak pressure near the center is about 10³⁵ pascals, which exceeds the pressure estimated for the most densely packed known objects in the Universe, neutron stars"

How is the pressure distribution extracted from data? (How does the proton/neutron get its mass and spin?)

Introducing the complete formalism

arXiv:1903.05742

- Supersedes previous work by Belitsky Kirchner Mueller and Kumericki Mueller
- ✓ The main advantages are :
 - Covariance (not just Lab frame): a desirable feature for the EIC
 - Transparent description of observables that ties into the TMD and other coincidence experiments picture

A multi-step, multi-prong process

- e^+ e' e е $q' = q + \Delta$ 'n q p'= p-∆ p $t=\Delta^2$
- Deeply Virtual Compton Scattering
 Timelike Compton Scattering

A multi-step, multi-prong process

- Deeply Virtual Meson Production
- Exclusive Drell Yan

A multi-step, multi-prong process

Deeply Virtual Meson Production

Exclusive Drell Yan

$$\frac{d^5\sigma}{dx_{Bj}dQ^2d|t|d\phi d\phi_S} = \frac{\alpha^3}{16\pi^2(s-M^2)^2\sqrt{1+\gamma^2}} |T|^2 ,$$

 $T(k, p, k', q', p') = T_{DVCS}(k, p, k', q', p') + T_{BH}(k, p, k', q', p'),$

3/27/20

DVCS

	GPD	Twist	$P_q P_p$	TMD	$P_{Beam}P_p$ (DVCS)	$P_{Beam}P_p(\mathcal{I})$	
	$\mathbf{H} + \frac{\xi^2}{1-\xi}E$	2	UU	f_1	$UU, LL, UT^{\sin(\phi-\phi_s)}, LT^{\cos(\phi-\phi_s)}$	$UU^{\cos\phi}, LU^{\sin\phi}$	
	$\widetilde{\mathbf{H}} + \frac{\xi^2}{1-\xi}\widetilde{E}$	2	LL	g_1	$UU, LL, UT^{\sin(\phi-\phi_s)}, LT^{\cos(\phi-\phi_s)}$	$UU^{\cos\phi}, UL^{\cos\phi}, LU^{\sin\phi}, LL^{\sin\phi}, UT^{\frac{\cos\phi}{\sin\phi}}, LT^{\cos\phi}$	
	${f E}$	2	UT	$f_{1T}^{\perp (*)}$	$UT^{\sin(\phi-\phi_s)}, LT^{\cos(\phi-\phi_s)}$	$UU^{\cos\phi}, LU^{\sin\phi}, UT, LT, UT^{\cos\phi}, UT^{\sin\phi}$	
	$\widetilde{\mathbf{E}}$	2	LT	g_{1T}	$UT^{\sin(\phi-\phi_s)}, LT^{\cos(\phi-\phi_s)}$	$UL^{\sin\phi}, LL^{\cos\phi}, UT^{\cos\phi}, UT^{\sin\phi}$	
Observables	H+E	2	-	-	-	$UU^{\cos\phi}, LU^{\sin\phi}, UL^{\sin\phi}, LL^{\cos\phi}, UT^{\cos\phi}, UT^{\sin\phi}$	
	$2\widetilde{\mathbf{H}}_{\mathbf{2T}} + \mathbf{E}_{\mathbf{2T}} - \xi \widetilde{E}_{2T}$	3	UU	f^{\perp}	$UU^{\cos\phi}, LU^{\sin\phi}$	UU, LU	
	$2\widetilde{\mathbf{H}}_{\mathbf{2T}}' + \mathbf{E}_{\mathbf{2T}}' - \xi \widetilde{E}_{2T}'$	3	LL	g_L^\perp	$UU^{\cos\phi}, LU^{\sin\phi}$	UU, LU	
	$\mathbf{H_{2T}}+\frac{\mathbf{t_o}-\mathbf{t}}{4M^2}\widetilde{\mathbf{H}}_{\mathbf{2T}}$	3	UT	$f_T^{(*)}, f_T^{\perp (*)}$	$UU^{\cos\phi}, UL^{\cos\phi}, LU^{\sin\phi}, LL^{\cos\phi}$	UU, LU	
	$\mathbf{H_{2T}'} + \frac{\mathbf{t_o} - \mathbf{t}}{4\mathbf{M^2}} \mathbf{\widetilde{H}_{2T}'}$	3	LT	g_T',g_T^\perp	$UU^{\cos\phi}, UL^{\cos\phi}, LU^{\sin\phi}, LL^{\cos\phi}$	UU, LU	
	$\widetilde{\mathbf{E}}_{\mathbf{2T}} - \xi E_{2T}$	3	UL	$f_L^{\perp (*)}$	$UU^{\cos\phi}, UL^{\cos\phi}, LU^{\sin\phi}, LL^{\cos\phi}$	UU, LU, UT Orbital an	gular momentum
	$\widetilde{\mathbf{E}}_{\mathbf{2T}}' - \xi E_{2T}'$	3	LU	$g^{\perp(*)}$	$UU^{\cos\phi}, UL^{\cos\phi}, LU^{\sin\phi}, LL^{\cos\phi}$	UU, LU, UT Spin Orbit	,
cessible	\widetilde{H}_{2T}	3	UT_x	$f_T^{\perp (*)}$	$UU^{\cos\phi}, UL^{\cos\phi}, LU^{\sin\phi}, LL^{\cos\phi}$	UU, LU, UT Transverse	e Orbital angular
Newly accountions.	$\widetilde{\mathbf{H}}'_{\mathbf{2T}}$	3	LT_x	g_T^\perp	$UU^{\cos\phi}, UL^{\cos\phi}, LU^{\sin\phi}, LL^{\cos\phi}$	UU, LU, UT momentu	m
contre							
3/27/20							11

BH

$$\frac{d^5\sigma_{BH}}{dx_{Bj}dQ^2d|t|d\phi d\phi_S} = \Gamma \left|T_{BH}\right|^2 = \frac{\Gamma}{t} \left\{F_{UU}^{BH} + (2\Lambda)(2h)F_{LL}^{BH} + (2\Lambda_T)(2h)F_{LT}^{BH}\right\}$$

$$\frac{d^5 \sigma_{unpol}^{BH}}{dx_{Bj} dQ^2 d|t| d\phi d\phi_S} \equiv \frac{\Gamma}{t} F_{UU}^{BH} = \frac{\Gamma}{t} \left[A(y, x_{Bj}, t, Q^2, \phi) \left(F_1^2 + \tau F_2^2 \right) + B(y, x_{Bj}, t, Q^2, \phi) \tau G_M^2(t) \right]$$

$$\begin{split} A = & \frac{16 M^2}{t(k \, q')(k' \, q')} \Bigg[4\tau \Big((k \, P)^2 + (k' \, P)^2 \Big) - (\tau + 1) \Big((k \, \Delta)^2 + (k' \, \Delta)^2 \Big) \Bigg] \\ B = & \frac{32 M^2}{t(k \, q')(k' \, q')} \Big[(k \, \Delta)^2 + (k' \, \Delta)^2 \Big] \,, \end{split}$$

3/27/20

$$\begin{split} c^{\rm BH}_{0,\rm upp} &= 8K^2 \bigg\{ \Big(2+3\epsilon^2\Big) \frac{\mathcal{Q}^2}{\Delta^2} \Big(F_1^2 - \frac{\Delta^2}{4M^2} F_2^2\Big) + 2x_{\rm B}^2 (F_1 + F_2)^2 \bigg\} \\ &+ (2-y)^2 \bigg\{ \Big(2+\epsilon^2\Big) \bigg[\frac{4x_{\rm B}^2 M^2}{\Delta^2} \Big(1+\frac{\Delta^2}{\mathcal{Q}^2}\Big)^2 \\ &+ 4(1-x_{\rm B}) \Big(1+x_{\rm B}\frac{\Delta^2}{\mathcal{Q}^2}\Big) \bigg] \Big(F_1^2 - \frac{\Delta^2}{4M^2} F_2^2\Big) \\ &+ 4x_{\rm B}^2 \bigg[x_{\rm B} + \Big(1-x_{\rm B} + \frac{\epsilon^2}{2}\Big) \Big(1-\frac{\Delta^2}{\mathcal{Q}^2}\Big)^2 \\ &- x_{\rm B}(1-2x_{\rm B})\frac{\Delta^4}{\mathcal{Q}^4} \bigg] (F_1 + F_2)^2 \bigg\} \\ &+ 8\Big(1+\epsilon^2\Big) \Big(1-y-\frac{\epsilon^2 y^2}{4}\Big) \\ &\times \bigg\{ 2\epsilon^2 \Big(1-\frac{\Delta^2}{4M^2}\Big) \Big(F_1^2 - \frac{\Delta^2}{4M^2} F_2^2\Big) - x_{\rm B}^2 \Big(1-\frac{\Delta^2}{\mathcal{Q}^2}\Big)^2 (F_1 + F_2)^2 \bigg] \end{split}$$

A.V. Belitsky et al. / Nuclear Physics B 629 (2002) 323-392

$$\begin{split} c_{1,\mathrm{unp}}^{\mathrm{BH}} &= 8K(2-y) \bigg\{ \bigg(\frac{4x_{\mathrm{B}}^2 M^2}{\Delta^2} - 2x_{\mathrm{B}} - \epsilon^2 \bigg) \bigg(F_1^2 - \frac{\Delta^2}{4M^2} F_2^2 \bigg) \\ &\quad + 2x_{\mathrm{B}}^2 \bigg(1 - (1 - 2x_{\mathrm{B}}) \frac{\Delta^2}{\mathcal{Q}^2} \bigg) (F_1 + F_2)^2 \bigg\}, \\ c_{2,\mathrm{unp}}^{\mathrm{BH}} &= 8x_{\mathrm{B}}^2 K^2 \bigg\{ \frac{4M^2}{\Delta^2} \bigg(F_1^2 - \frac{\Delta^2}{4M^2} F_2^2 \bigg) + 2(F_1 + F_2)^2 \bigg\}. \end{split}$$

...compared to BKM, NPB (2001)

$$\begin{aligned} |\mathcal{T}_{\rm BH}|^2 &= \frac{e^6}{x_{\rm B}^2 y^2 (1+\epsilon^2)^2 \Delta^2 \mathcal{P}_1(\phi) \mathcal{P}_2(\phi)} \\ &\times \left\{ c_0^{\rm BH} + \sum_{n=1}^2 c_n^{\rm BH} \cos{(n\phi)} + s_1^{\rm BH} \sin{(\phi)} \right\}, \end{aligned}$$

3/27/20

3/27/20

BH-DVCS interference

$$\frac{d^{5}\sigma_{\mathcal{I}}}{dx_{Bj}dQ^{2}d|t|d\phi d\phi_{S}} = e_{l}\Gamma\left(T_{BH}^{*}T_{DVCS} + T_{DVCS}^{*}T_{BH}\right)$$

$$= e_{l}\frac{\Gamma}{Q^{2}|t|}\left\{F_{UU}^{\mathcal{I}} + (2h)F_{LU}^{\mathcal{I}} + (2\Lambda)F_{UL}^{\mathcal{I}} + (2h)(2\Lambda)F_{LL}^{\mathcal{I}} + (2\Lambda_{T})F_{UT}^{\mathcal{I}} + (2h)(2\Lambda_{T})F_{LT}^{\mathcal{I}}\right\}$$
Unpolarized
$$F_{UU}^{\mathcal{I}} = F_{UU}^{\mathcal{I},tw2} + \frac{K}{\sqrt{Q^{2}}}F_{UU}^{\mathcal{I},tw3}$$

14

$$F_{UU}^{\mathcal{I},tw2} = A_{UU}^{\mathcal{I}} \Re e \left(F_1 \mathcal{H} + \tau F_2 \mathcal{E} \right) + B_{UU}^{\mathcal{I}} G_M \Re e \left(\mathcal{H} + \mathcal{E} \right) + C_{UU}^{\mathcal{I}} G_M \Re e \widetilde{\mathcal{H}}$$

$$F_{UU}^{\mathcal{I},tw3} = \Re e \left\{ A_{UU}^{(3)\mathcal{I}} \Big[F_1(2\tilde{\mathcal{H}}_{2T} + \mathcal{E}_{2T}) + F_2(\mathcal{H}_{2T} + \tau\tilde{\mathcal{H}}_{2T}) \Big] + B_{UU}^{(3)\mathcal{I}} G_M \, \widetilde{E}_{2T} + C_{UU}^{(3)\mathcal{I}} G_M \, \Big[2\xi H_{2T} - \tau(\widetilde{E}_{2T} - \xi E_{2T}) \Big] \right\}$$

Rosenbluth separation for Bethe-Heitler contribution

$$\frac{d^5 \sigma_{unpol}^{BH}}{dx_{Bj} dQ^2 d|t| d\phi d\phi_S} = \frac{\Gamma}{t^2} \left[A_{BH} \left(F_1^2 + \tau F_2^2 \right) + B_{BH} \tau G_M^2(t) \right]$$

Rosenbluth Separated Data for BH-DVCS

Comparison with other/BKM based analyses

Re
$$\mathcal{H}^{(\pm)}(\xi, t) = \frac{1}{\pi} \left[P.V. \int_{-1}^{\xi_n} dx \frac{\mathcal{H}^{(\pm)}(x, x, t)}{x - \xi} + \int_{\xi_n}^{\pm 1} dx \frac{\mathcal{H}^{(\pm)}(x, x, t)}{x - \xi} \right]$$

Impact on pressure extraction through dispersion relations
 $Q^2 = 2 \text{ GeV}^2 \quad t = -0.3 \text{ GeV}^2$
 $Q^2 = 2 \text{ GeV}^2 \quad t = -0.3 \text{ GeV}^2$
 $Q^2 = 2 \text{ GeV}^2 \quad t = -0.3 \text{ GeV}^2$
 $Q^2 = 2 \text{ GeV}^2 \quad t = -0.3 \text{ GeV}^2$
 $Q^2 = 2 \text{ GeV}^2 \quad t = -0.3 \text{ GeV}^2$
 $Q^2 = 2 \text{ GeV}^2 \quad t = -0.3 \text{ GeV}^2$
 $Q^2 = 2 \text{ GeV}^2 \quad t = -0.3 \text{ GeV}^2$
 $Q^2 = 2 \text{ GeV}^2 \quad t = -0.3 \text{ GeV}^2$
 $Q^2 = 2 \text{ GeV}^2 \quad t = -0.3 \text{ GeV}^2$
 $Q^2 = 2 \text{ GeV}^2 \quad t = -0.3 \text{ GeV}^2$
 $Q^2 = 2 \text{ GeV}^2 \quad t = -0.3 \text{ GeV}^2$
 $Q^2 = -0.5 \text{ G$

Center for Nuclear Femtography Project at Jefferson Lab

Summer Institute for Wigner Imaging and Femtography

The University of Virginia is stepping up this truly interdisciplinary effort

Femtography Imaging with Neural Networks (FINN)

- A fully connected neural network maps input kinematic data to a vector of eight form factors (see diagram).
- 2. Use a code developed by our Data Analysis Team to evaluate the cross sections and in terms of the CFFs.

Jake Grigsby

We translate the x-sec. code into TensorFlow

→Automatically differentiable

→At variance with other efforts we can train CFF extraction network with backpropagation and variants of stochastic gradient descent.

Compton Form factors

Conclusions and Outlook

We provide a new key to interpreting polarized degrees of freedom in deeply virtual exclusive experiments

Please check out our new formalism!!

arXiv:1903.05742