YR DWG Calorimetry: Summary of the Parallel Session

Subconveners: V.Berdnikov & E.Chudakov

EICUG YR Meeting, Temple 2020 March

DWG: Calorimetry 2020/03/19

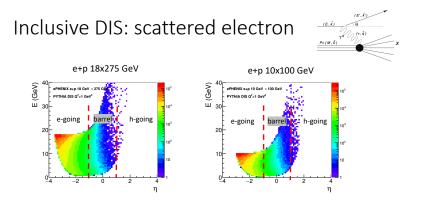
EICUG YR Meeting, Temple

DWG Calorimetry Parallel Sessions on Mar 19

- Actual time: 14:30-17:00, 17:15-18:30
- Attendance: between 12 and 20
- 4 presentations:
 - A.Bazilevsky: "Initial Consideration for the EMCAL of the EIC Detector"
 - B.Page: "Jets and Calorimetry: First Look"
 - T.Horn: "EM Calorimeter Technologies for EIC"
 - O.Tsai: "Hadron Calorimeter for EIC"
- Discussions:
 - Still unclear requirements:
 - Granularity at large η the hadron side
 - Hadron calorimeters is the barrel needed?
 - Technical details infrastructure, space etc
 - Path forward:
 - MC and feedback from Physics Working Groups
 - Preparations for the next meeting in May

ECAL and HCAL Coverage

"An Electron-Ion Collider Study" BNL, August 2019

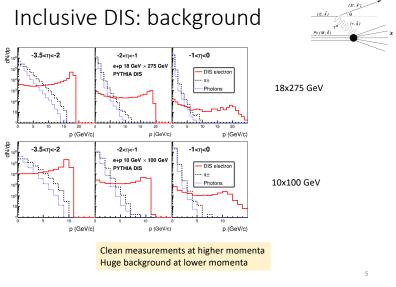

78 CHAPTER 2. EIC PHYSICS AND REQUIREMENTS FOR MACHINE DES

9.0m hadrons electrons silicon trackers TPC **GEM** trackers 3T solenoid coils e/m calorimeters DWG: Calorimetry 2020/03/19 EICUG YR Meeting, Temple ECAL: $\sim 4\pi$ HCAL: ?

eRD1 Report, July 2018

Regions and Physics Goals	Calorimeter Design
Lepton/backward: EM Cal ◦ Resolution driven by need to determine (x, Q ²) kinematics from scattered electron measurement ◦ Prefer 1.5%/√E + 0.5%	Inner EM Cal for for η < -2:
Ion/forward: EM Cal ○ Resolution driven by deep exclusive measurement energy resolution with photon and neutral pion ○ Need to separate single-photon from two-photon events ○ Prefer 6-7%/√E and position resolution < 3 mm	
Barrel/mid: EM Cal ○ Photons and neutral pions from SIDIS and DES in range 1-10 GeV, so absolute energy uncertainty in photon should be 100 MeV ○ Leads to order 10%/√E	Barrel, EM calorimetry ➤ Compact design as space is limited ➤ Energy resolution of at least order 10%/√E, and likely better
Ion/Forward: Hadron Cal ○ Driven by need for x-resolution in high-x measurements ○ Need Δx resolution better than 0.05 ○ For diffractive with ~50 GeV hadron energy, this means 40%/√E	Hadron endcap: > Hadron energy resolution to order 40%/√E, > EM energy resolution to < (2%/√E + 1%) > Jet energy resolution < (50%/√E + 3%)

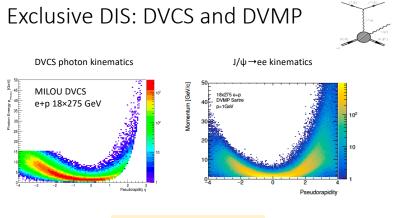
A.Bazilevski: Initial Consideration for the EMCAL


Mostly scattered in backward (e-going) and barrel Electron energy varies from 0 to e-beam energy in backward (e-going) And to higher energy in barrel and h-going region

Good resolution is needed at $\eta < -2$

DWG: Calorimetry 2020/03/19

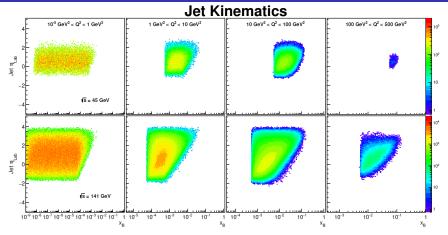
EICUG YR Meeting, Temple


A.Bazilevski: Initial Consideration for the EMCAL

DWG: Calorimetry 2020/03/19

EICUG YR Meeting, Temple

A.Bazilevski: Initial Consideration for the EMCAL


Wide rapidity coverage is crucial

DWG: Calorimetry 2020/03/19

7/10

9

B.Page: Jets and Calorimetry

- Assumption: HCAL $-4 < \eta < 4$
- Showers are "sparse"
- Low momenta: $\sigma E/E_{HCAL} \gg \sigma p/p$

- Role at $\eta > 3$
- Neutrals (~ 33% of showers)
- Needed coverage?
- Granularity?

DWG: Calorimetry 2020/03/19

EICUG YR Meeting, Temple

Calorimeter Technologies

ECAL - T.Horn

Description of technologies

- $2\%/\sqrt{E} \oplus 0.7\%$ PbWO₄ crystals
- $> 6\%/\sqrt{E} \oplus 2.0\%$ several technologies
- > 30k channels

HCAL - O.Tsai

Description of technologies

• $50\%/\sqrt{E} \oplus 10\%$ seems possible

Light sensor of choice: SiPM SiPM rad. hardness study Large neutron fluence expected Issues: space in Z is tight!

- Energy resolution: several affordable technologies exist to meet the specs for the most of the parts Exceptions:
 - backward ECAL specs η < -2

 1.0 1.5/√E ⊕ 0.5% may be achievable with other crystals

 HCAL η > 2

 40/√E ⇒ 50/√E ⊕ 10%
- Issues: space, radiation hardness of the Si light sensors

• Continue the work on:

- Granulation at $\eta > 3$
- HCAL barrel is it needed?
- Backward ECAL can we meet the specs? (Csl or something)
- Study calibration options processes, statistics
- Determine more or less realistic dimensions of the ECAL/HCAL and the material budget
- Planned communication with the PWGs via simulation Assumed: simplified but full model(s) of the spectrometer
 - Provide to *EIC Smear*: functions for efficiency, resolution, electron identification
 - PWG: feedback from the the PDGs
 - Next iteration?