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Introduction
Semi-Inclusive DIS

Various types of TMDs

Semi-inclusive Deep Inelastic Scattering

Semi-inclusive hadron production in deep inelastic scattering (SIDIS) provides a power-
ful probe of the transverse momentum dependent (TMD) quark distributions of nucleons.
Common kinematic variables have been described in the DIS section (see the Sidebar on
page 18). In SIDIS, the kinematics of the final state hadrons can be specified as follows
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Figure 2.11: Semi-inclusive hadron production
in DIS processes: e + N ! e0 + h + X, in the
target rest frame. P hT and S? are the trans-
verse components of P h and S with respect to
the virtual photon momentum q = k � k0.

�h, �s Azimuthal angles of the final state
hadron and the transverse polarization
vector of the nucleon with respect to
the lepton plane.

PhT Transverse momentum of the final state
hadron with respect to the virtual pho-
ton in the center-of-mass of the virtual
photon and the nucleon.

z = Ph · P/q · P gives the momentum frac-
tion of the final state hadron with re-
spect to the virtual photon.
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Figure 2.12: Leading
twist TMDs classified ac-
cording to the polarizations
of the quark (f, g, h)
and nucleon (U, L, T).

The distributions f?,q
1T and

h?,q
1 are called naive-time-

reversal-odd TMDs. For glu-
ons a similar classification of
TMDs exists.

The di↵erential SIDIS cross section can be written as a convolution of the transverse
momentum dependent quark distributions f(x, kT ), fragmentation functions D(z, pT ), and
a factor for a quark or antiquark to scatter o↵ the photon. At the leading power of 1/Q,
we can probe eight di↵erent TMD quark distributions as listed in Fig. 2.12. These distri-
butions represent various correlations between the transverse momentum of the quark kT ,
the nucleon momentum P , the nucleon spin S, and the quark spin sq.

32

Probe unpolarized TMDs via h and hh.

From spin-asymmetries, we can study spin-dependent TMDs such as the Sivers
function f⊥1T .
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Semi-Inclusive DIS

A Tale of Two Gluon Distributions

In terms of operators (TMD def. [Bomhof, Mulders and Pijlman, 06]), two gauge
invariant gluon definitions: [Dominguez, Marquet, Xiao and Yuan, 11]
I. Weizsäcker Williams gluon distribution:

xGWW(x, k⊥) = 2
∫

dξ−dξ⊥
(2π)3P+

eixP+ξ−−ik⊥·ξ⊥Tr〈P|F+i(ξ−, ξ⊥)U [+]†F+i(0)U [+]|P〉.

II. Color Dipole gluon distributions:

xGDP(x, k⊥) = 2
∫

dξ−dξ⊥
(2π)3P+

eixP+ξ−−ik⊥·ξ⊥Tr〈P|F+i(ξ−, ξ⊥)U [−]†F+i(0)U [+]|P〉.

ξ
−

ξT

ξ
−

ξT

U [−] U [+]

The WW gluon distribution is the conventional gluon distributions.
The dipole gluon distribution has no such interpretation.
Two topologically different gauge invariant definitions.
Same after integrating over k⊥;
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A Tale of Two Gluon Distributions

Measuring the gluon distributions in various processes I. Weizsäcker Williams gluon
distribution; II. Color Dipole gluon distributions.
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×⇒ Do Not Appear.
√⇒ Apppear.

4 / 10



Introduction
Semi-Inclusive DIS

Semi-Inclusive DIS

Study unpolarized quark TMDs in the Breit frame (‘brick wall’ frame) in SIDIS

4 2 EXPERIMENT, DATA SELECTION AND ACCEPTANCE
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Fig. 1: Sketch showing the kinematic variables for the absorption of a virtual photon by a parton with
intrinsic transverse momentum k? and the subsequent hadronization. The transverse momentum of the
observed hadron is denoted by pT when defined with respect to the virtual photon direction in the photon
nucleon center of mass system and by p? when defined with respect to the scattered parton direction.

analysis are therefore significantly smaller, although only part of the available data has been used. The
results presented here are obtained from data taken during the year 2004. More details of the analysis
are described in Ref. [11].

2 Experiment, Data Selection and Acceptance

The COMPASS experiment is installed on the M2 beam line of the CERN SPS [12]. Polarised 160 GeV/c
muons with an intensity of 2⇥108µ/spill (one spill of 4.8 s length per 16.8 s) and a polarisation of 80%
are scattered off a longitudinally polarised 6LiD target. In 2004 the target consisted of two cells with
opposite polarisation which was reversed every 8 hours. It has been verified that summing up the data
from both cells yields a data sample with vanishing polarisation for the present analysis. The COMPASS
detector is a large acceptance two-stage spectrometer which covers the kinematic range from quasi-real
photoproduction to DIS. Both stages are equipped with hadron calorimeters and use absorber walls for
muon identification. Charged particles emerging from the primary interaction vertex in the forward di-
rection are identified as muons if they traverse at least 30 radiation length, otherwise they are identified
as hadrons. The selection requires reconstructed trajectories in the detectors situated upstream and down-
stream of the first magnet. This ensures that the track momentum and sign of charge are well defined by
bending in the magnetic field. The COMPASS ability to separate pions, kaons and protons with a Ring
Imaging Cherenkov detector was not used in this analysis. Muon interactions with Q2 > 1.0 (GeV/c)2

and 0.1 < y < 0.9 are selected, where y = n/Eµ , and n = Eµ �Eµ 0 is the difference between the lab-
oratory energies of the incoming and outgoing muon µ and µ 0. With the above selection, the hadronic
energy squared W 2 = 2Mn + M2 �Q2 is > 25 GeV/c, above the nucleon resonance region. Here, M is
the nucleon mass. The total number of inclusive events selected for this analysis is 45.8⇥ 106, corre-
sponding to an integrated luminosity of 775 pb�1. The events are sampled into 23 intervals in Q2 from
1 to 10 (GeV/c)2 and xB j from 0.004 to 0.12, as shown in Fig. 2. The ranges and average values of Q2

and xB j are shown in Tab. 1. Each of these (xB j,Q2) intervals is further subdivided into 8 intervals in z
from 0.2 to 0.8.

In order to correct for event losses caused by the non uniform acceptance of the COMPASS spectrometer,
a full Monte Carlo (MC) simulation has been performed. The events were generated with LEPTO [13],
passed through the spectrometer with a GEANT [14] based simulation program and reconstructed with
the reconstruction software as the real data events.

The SIDIS acceptances A(+,�)
SIDIS for detecting, together with the scattered muon, a positive (h+) or neg-

ative hadrons (h�) respectively factorize in an inclusive muon acceptance Aincl(Q2,y) and a positive or
negative hadron acceptance Ah(+,�) (lab pT , labh). These acceptances depend on the spectrometer charac-

In the Breit frame qµ = (0, 0, 0,−Q), k = (k0, k⊥, k3 = Q/2), zh ≡ p·P
q·P .

We need to measure the recoiled electron to reconstruct the incoming virtual momentum.
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Dijet production in DIS
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Back-to-back correlation measurement C(∆φ): [Zheng, Aschenauer, Lee and
BX, 14] Unique golden measurement for the Weizsäcker Williams gluon
distributions.
EIC will be a perfect machine to study gluon saturation inside protons/nuclei.
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Linearly Polarized Gluon distribution

3

⌘i=� ln
⇥
tan( 1

2✓i)
⇤
, ✓i being the polar angles of the final

partons in the virtual photon-hadron cms frame. Note
that A now also receives a contribution from �⇤q ! gq,
leading to somewhat smaller asymmetries.

Since the observables involve final-state heavy quarks
or jets, they require high energy colliders, such as a future
Electron-Ion Collider (EIC) or the Large Hadron electron
Collider (LHeC) proposed at CERN. It is essential that
the individual transverse momenta Ki? are reconstructed
with an accuracy �K? better than the magnitude of the
sum of the transverse momenta K1? + K2? = qT . Thus
one has to satisfy �K? ⌧ |qT | ⌧ |K?|.

An analogous asymmetry arises in QED, in the ‘tri-
dents’ processes `e(p) ! `µ+µ�e0(p0 or X) or µ�Z !
µ�`¯̀Z [18–21]. This could be described by the distribu-
tion of linearly polarized photons inside a lepton, pro-
ton, or atom. QCD adds the twist that for gluons inside
a hadron, ISI or FSI can considerably modify the result
depending on the process, for example, in HQ produc-
tion in hadronic collisions: p p ! Q Q̄ X, which can be
studied at BNL’s Relativistic Heavy Ion Collider (RHIC)
and CERN’s LHC, and p p̄ ! Q Q̄ X at Fermilab’s Teva-
tron. Since the description involves two TMDs, breaking
of TMD factorization becomes a relevant issue, cf. [14]
and references therein. The cross section for the process
h1(P1)+h2(P2)!Q(K1)+Q̄(K2)+X can be written in a
way similar to the hadroproduction of two jets discussed
in Ref. [13], in the following form

d�

dy1dy2d2K1?d2K2?
=

↵2
s

sM2
?

⇥
h
A(q2

T ) + B(q2
T )q2

T cos 2(�T � �?)

+ C(q2
T )q4

T cos 4(�T � �?)
i
. (7)

Besides q2
T , the terms A, B and C will depend on other,

often not explicitly indicated, variables as z, M2
Q/M2

?
and momentum fractions x1, x2 obtained from x1/2 =
( M1? e±y1 +M2? e±y2 ) /

p
s .

In the most naive partonic description the terms A, B,
and C contain convolutions of TMDs. Schematically,

A : fq
1 ⌦ f q̄

1 , fg
1 ⌦ fg

1 ,

B : h? q
1 ⌦ h? q̄

1 ,
M2

Q

M2
?

fg
1 ⌦ h? g

1 ,

C : h? g
1 ⌦ h? g

1 .

Terms with higher powers in M2
Q/M2

? are left out. In

Fig. 1 the origin of the factor M2
Q/M2

? in the contribution

of h? g
1 to B is explained.

The factorized description in terms of TMDs is prob-
lematic though. In Ref. [14] it was pointed out that for
hadron or jet pair production in hadron-hadron scatter-
ing TMD factorization fails. The ISI/FSI will not allow
a separation of gauge links into the matrix elements of

the various TMDs. Only in specific simple cases, such
as the single Sivers e↵ect, one can find weighted expres-
sions that do allow a factorized result, but with in gen-
eral di↵erent factors for di↵erent diagrams in the partonic
subprocess [22, 23]. Even if this applies to the present
case for A and B as well, actually two di↵erent func-

tions h
?g(2)
1 (x) (and f

g(1)
1 (x)) will appear, corresponding

to gluon operators with the color structures fabe fcde and
dabe dcde, respectively [23, 24]. This is similar to what
happens for single transverse spin asymmetries (AN ) in
heavy quark production processes [25–29]. Because there
too two di↵erent (f and d type) gluon correlators arise,
the single-spin asymmetries in D and D̄ meson produc-
tion are found to be di↵erent. However, in the unpo-
larized scattering case considered in this letter the situ-
ation is simpler, since only one operator contributes or
dominates. In the �⇤g ! Q Q̄ subprocess only the ma-
trix element with the f f -structure appears, while in the
g g ! Q Q̄ subprocess relevant for hadron-hadron colli-
sions the d d-structure dominates (the ff -contribution is
suppressed by 1/N2). A side remark on pT broadening
[30–32]: because of the two di↵erent four-gluon opera-

tors for f
g(1)
1 (x) we expect the broadening �p2

T in SIDIS,
(�p2

T )DIS ⌘ hp2
T ieA �hp2

T iep, to be di↵erent from the one
in hadron-hadron collisions, (�p2

T )hh ⌘ hp2
T ipA � hp2

T ipp.

In case weighting does allow for factorized expres-
sions, we present here the relevant expressions for B =
Bqq̄!QQ̄ + (M2

Q/M2
?) Bgg!QQ̄, where

Bqq̄!QQ̄ =
N2 � 1

N2
z2(1 � z)2

 
1 �

M2
Q

M2
?

!

⇥

Hqq̄(x1, x2, q

2
T ) + Hq̄q(x1, x2, q

2
T )

�
,

Bgg!QQ̄ =
N

N2 � 1
B1 Hgg(x1, x2, q

2
T ) , (8)
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FIG. 1: Examples of subprocesses contributing to the cos 2�
asymmetries in e p ! e0 Q Q̄ X and p p ! Q Q̄ X, respec-
tively. As the helicities of the photons and gluons indicate,
the latter process requires helicity flip in quark propagators
resulting in an M2

Q/M2
? factor.
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FIG. 2: The average azimuthal anisotropy v2 = hcos 2�i versus the dijet transverse momentum scale PT or the dijet transverse
momentum imbalance qT , respectively. The assumed �⇤A center of mass energy is

p
s = 100 GeV. Since Q2 = 4P 2

? and z = 1/2
these curves apply to either longitudinal or transverse photon polarization. Solid (dashed) lines correspond to fixed (running)
coupling evolution.

We obtain the Wilson lines U numerically from B-
JIMWLK evolution in Y = ln(x0/x), starting from
an initial condition at x0 = 10�2 using the the MV
model. The initial condition on the lattice is constructed
as described in detail in Ref. [37]. The B-JIMWLK
equation can be solved on the lattice with a Langevin
method [38, 39]. We use here the “left-right” symmet-
ric [40] numerical method introduced in Ref. [41], using
either fixed coupling or a running coupling with the al-
gorithm of Ref. [41]. As in e.g. Ref. [42], we determine
the saturation scale Qs numerically from the two-point
(dipole) function of the Wilson lines. The renormaliza-
tion group evolution increases Qs roughly as Q2

s ⇠ x�0.3.
For the calculation of the light cone gauge field one needs
Fourier transforms of derivatives of Wilson lines. Some
care must be exercised to obtain the proper momen-
tum space distribution: we have used two di↵erent cen-
tered di↵erence methods (discretizing over one or two
lattice spacings) and found that the results are equiva-
lent. For the fixed coupling evolution we take ↵s = 0.15
to provide an evolution speed roughly in line with in-
clusive HERA data. For running coupling we use in
this preliminary study the slightly overestimated value
Qs(x0)/⇤QCD = 11, which also slows down the evolution
closer to experimentally observed values.

For our numerical estimates below we take Q2 = 4P 2
?.

Hence, for z = 1/2, vL
2 and vT

2 have equal magnitude
but there is a relative phase shift of ⇡/2. The physi-
cal momentum scale is set by the saturation momentum
at x0. To obtain the numerical values in the plots we
take Qs(x0) = 1 GeV (for a qq̄ dipole). The saturation
momentum corresponds to the scale where the forward

scattering amplitude is of order 1.

We now turn to describe our results. We first show the
solution for the unintegrated gluon distributions before
discussing the azimuthal asymmetry w.r.t. the direction
of ~q? of the �⇤A cross section.

Figure 1 shows the dependence of G(1) and h
(1)
? at dif-

ferent evolution rapidities Y on transverse momentum.
We refrain from showing curves for running coupling evo-
lution since they look very similar. Either one of the
TMDs drops rapidly as a power of q? at high transverse
momentum q? � Qs and so they are best measured at
q? of order a few times the saturation scale. For a heavy-
ion target the saturation scale is boosted (on average over
impact parameters) by a factor of ⇠ A1/3 [43] which fa-
cilitates such measurements in a regime of semi-hard q?.

The degree of gluon linear polarization is maximal at

high transverse momentum, h
(1)
? /G(1) ! 1; the satura-

tion of the positivity bound of the cross section has also
been observed in perturbative twist-2 calculations of the
small-x field of a fast quark [4, 6]. On the other hand

h
(1)
? /G(1) ⌧ 1 at low q? which conforms to the expected

power suppression. At fixed q?/Qs(x) the ratio of these
functions decreases rather slowly with rapidity, at least
after an initial evolution away from the MV model to-
wards the B-JIMWLK fixed point. This means that, be-

cause of the growth of Qs, the ratio h
(1)
? /G(1) at fixed

transverse momentum q? decreases with rapidity. Thus
the emission of additional small-x gluons reduces the de-
gree of polarization. Our results show that this e↵ect
can quite well be parametrized by geometric scaling as a
universal function of q?/Qs.

In Fig. 2 we show the elliptic asymmetry as a func-

2

ciple be nonzero in the absence of ISI or FSI. Neverthe-
less, as any TMD, h? g

1 can receive contributions from ISI
or FSI, leading to process-dependent gauge links in Eq.
(1). Therefore h? g

1 can be non-universal and its extrac-
tion can be hampered in nonfactorizing cases.

Thus far no experimental studies of the function h? g
1

have been performed. It has been pointed out [13] that it
contributes to the so-called dijet imbalance in hadronic
collisions, which is commonly used to extract the average
partonic intrinsic transverse momentum. Here it enters
the observable as a convolution of two h? g

1 functions,
similarly to the double Boer-Mulders e↵ect which leads
to a large sin2 ✓ cos 2� term and the leading-twist viola-
tion of the Lam-Tung relation in Drell-Yan lepton pair
production [2, 3]. Although in principle it is possible to

isolate the contribution from the h? g
1 functions by ap-

propriate weighting of the planar angular distribution,
that is likely too di�cult to do in practice. Moreover, it
is unclear whether this weighted observable factorizes to
begin with, because of factorization breaking e↵ects such
as discussed in Ref. [14].

Given its unique nature, it would be very interesting
to obtain an extraction of h? g

1 in a simple and theoret-
ically safe manner. This turns out to be possible, since
unlike h? q

1 , it does not need to appear in pairs. In this
letter we will discuss several new ways to probe the linear
gluon polarization using observables that involve only a
single h? g

1 . The processes of interest, semi-inclusive DIS
to two heavy quarks or to two jets, allow for TMD factor-
ization and hence a safe extraction. Analogous processes
in proton-proton collisions run into the problem of fac-
torization breaking. A di↵erence between the extractions
will allow to quantify the importance of ISI/FSI.

We first consider the electroproduction of heavy
quarks, e(`)+h(P ) ! e(`0)+Q(K1)+Q̄(K2)+X, where
the four-momenta of the particles are given within brack-
ets, and the quark-antiquark pair in the final state is al-
most back-to-back in the plane perpendicular to the di-
rection of the exchanged photon and hadron. The calcu-
lation proceeds along the lines explained in Refs. [13, 15].
We obtain for the cross section integrated over the angu-
lar distribution of the back-scattered electron e(`0):

d�

dy1 dy2 dy dxB d2qT d2K?
= �(1 � z1 � z2)

⇥ ↵2↵s

⇡sM2
?

(1 + yxB)

y5xB


A +

q2
T

M2
B cos 2(�T � �?)

�
. (2)

This expression involves the standard DIS variables:
Q2 = �q2, where q is the momentum of the virtual
photon, xB = Q2/2P · q, y = P · q/P · ` and s =
(` + P )2 = 2 ` · P = 2 P · q/y = Q2/xBy. Further-
more, we have for the jet momenta K2

i? = �K2
i? and

introduced the rapidities yi for the heavy quark (HQ)
or jet momenta (along photon-target direction). We de-
note the heavy (anti)quark mass with MQ. For the par-
tonic subprocess we have p + q = K1 + K2, implying

z1 + z2 = 1, where zi = P · Ki/P · q. We introduced
the sum and di↵erence of the transverse HQ or jet mo-
menta, K? = (K1?�K2?)/2 and qT = K1? +K2? with
|qT | ⌧ |K?|. In that situation, we can use the approx-
imate transverse HQ or jet momenta K1? ⇡ K? and
K2? ⇡ �K? denoting M2

i? ⇡ M2
? = M2

Q +K2
?. The az-

imuthal angles of qT and K? are denoted by �T and �?,
respectively. The functions A and B in general depend
on xB, y, z(⌘ z2), Q

2/M2
?, M2

Q/M2
?, and q2

T .
The explicit expression for the angular independent

part A involves only fg
1 . We will focus here on the coef-

ficient B of the cos 2(�T � �?) angular distribution and
we obtain

Beh!eQQ̄X =
X

Q

e2
Q h? g

1 (x, q2
T )Beg!eQQ̄ , (3)

with

Beg!eQQ̄ =
1

2

z(1 � z)

D3

 
1 �

M2
Q

M2
?

!
a(y)

⇥
"
�
2 z(1 � z) b(y) � 1

� Q2

M2
?

+ 2
M2

Q

M2
?

#
, (4)

D ⌘ D
�
z, Q2/M2

?
�

= 1 + z(1 � z)Q2/M2
?, a(y) = 2 �

y(2 � y), b(y) = (6 � y(6 � y))/a(y).
One observes that the magnitude B of the cos 2� asym-

metry, where � = �T��?, is determined by h? g
1 and that

if Q2 and/or M2
Q are of the same order as K2

?, the coe�-

cient B is not power suppressed. Since h? g
1 is completely

unknown, we estimate the maximum asymmetry that is
allowed by the bound:

|h? g(2)
1 (x)|  hp2

T i
2M2

fg
1 (x) , (5)

that we derived from the spin density matrix given in
[9] in the way presented in Ref. [16]. The superscript
(2) denotes the n = 2 transverse moment. Trans-
verse moments of TMDs are defined as: f (n)(x) ⌘R

d2pT

�
p2

T /2M2
�n

f(x, p2
T ) (a suitably chosen regular-

ization is understood, e.g. as discussed in appendix B
of [17]). If we select Q2 = M2

Q = K2
?/4, y1 = y2, the

asymmetry ratio

����
R

d2qT q2
T cos 2(�T � �?) d�R
d2qT q2

T d�

���� =
R

dq2
T q4

T |B|
2M2

R
dq2

T q2
T A

, (6)

is maximally around 13%, which we view as encouraging.
If one keeps the lepton plane angle �`, there are other

azimuthal dependences such as a cos 2(�` � �T ), but its
bound is at least 6 times smaller than on cos 2(�T ��?).

The cross section for the process e h ! e0 jet jet X
can be calculated in a similar way. The correspond-
ing expressions can be obtained from Eqs. (3) and (4)
with MQ = 0. One can then also replace the rapidities
of the outgoing particles, yi, with the pseudo-rapidities

2

ciple be nonzero in the absence of ISI or FSI. Neverthe-
less, as any TMD, h? g

1 can receive contributions from ISI
or FSI, leading to process-dependent gauge links in Eq.
(1). Therefore h? g

1 can be non-universal and its extrac-
tion can be hampered in nonfactorizing cases.

Thus far no experimental studies of the function h? g
1

have been performed. It has been pointed out [13] that it
contributes to the so-called dijet imbalance in hadronic
collisions, which is commonly used to extract the average
partonic intrinsic transverse momentum. Here it enters
the observable as a convolution of two h? g

1 functions,
similarly to the double Boer-Mulders e↵ect which leads
to a large sin2 ✓ cos 2� term and the leading-twist viola-
tion of the Lam-Tung relation in Drell-Yan lepton pair
production [2, 3]. Although in principle it is possible to

isolate the contribution from the h? g
1 functions by ap-

propriate weighting of the planar angular distribution,
that is likely too di�cult to do in practice. Moreover, it
is unclear whether this weighted observable factorizes to
begin with, because of factorization breaking e↵ects such
as discussed in Ref. [14].

Given its unique nature, it would be very interesting
to obtain an extraction of h? g

1 in a simple and theoret-
ically safe manner. This turns out to be possible, since
unlike h? q

1 , it does not need to appear in pairs. In this
letter we will discuss several new ways to probe the linear
gluon polarization using observables that involve only a
single h? g

1 . The processes of interest, semi-inclusive DIS
to two heavy quarks or to two jets, allow for TMD factor-
ization and hence a safe extraction. Analogous processes
in proton-proton collisions run into the problem of fac-
torization breaking. A di↵erence between the extractions
will allow to quantify the importance of ISI/FSI.

We first consider the electroproduction of heavy
quarks, e(`)+h(P ) ! e(`0)+Q(K1)+Q̄(K2)+X, where
the four-momenta of the particles are given within brack-
ets, and the quark-antiquark pair in the final state is al-
most back-to-back in the plane perpendicular to the di-
rection of the exchanged photon and hadron. The calcu-
lation proceeds along the lines explained in Refs. [13, 15].
We obtain for the cross section integrated over the angu-
lar distribution of the back-scattered electron e(`0):

d�

dy1 dy2 dy dxB d2qT d2K?
= �(1 � z1 � z2)

⇥ ↵2↵s

⇡sM2
?

(1 + yxB)

y5xB


A +

q2
T

M2
B cos 2(�T � �?)

�
. (2)

This expression involves the standard DIS variables:
Q2 = �q2, where q is the momentum of the virtual
photon, xB = Q2/2P · q, y = P · q/P · ` and s =
(` + P )2 = 2 ` · P = 2 P · q/y = Q2/xBy. Further-
more, we have for the jet momenta K2

i? = �K2
i? and

introduced the rapidities yi for the heavy quark (HQ)
or jet momenta (along photon-target direction). We de-
note the heavy (anti)quark mass with MQ. For the par-
tonic subprocess we have p + q = K1 + K2, implying

z1 + z2 = 1, where zi = P · Ki/P · q. We introduced
the sum and di↵erence of the transverse HQ or jet mo-
menta, K? = (K1?�K2?)/2 and qT = K1? +K2? with
|qT | ⌧ |K?|. In that situation, we can use the approx-
imate transverse HQ or jet momenta K1? ⇡ K? and
K2? ⇡ �K? denoting M2

i? ⇡ M2
? = M2

Q +K2
?. The az-

imuthal angles of qT and K? are denoted by �T and �?,
respectively. The functions A and B in general depend
on xB, y, z(⌘ z2), Q

2/M2
?, M2

Q/M2
?, and q2

T .
The explicit expression for the angular independent

part A involves only fg
1 . We will focus here on the coef-

ficient B of the cos 2(�T � �?) angular distribution and
we obtain

Beh!eQQ̄X =
X

Q

e2
Q h? g

1 (x, q2
T )Beg!eQQ̄ , (3)

with

Beg!eQQ̄ =
1

2

z(1 � z)

D3

 
1 �

M2
Q

M2
?

!
a(y)

⇥
"
�
2 z(1 � z) b(y) � 1

� Q2

M2
?

+ 2
M2

Q

M2
?

#
, (4)

D ⌘ D
�
z, Q2/M2

?
�

= 1 + z(1 � z)Q2/M2
?, a(y) = 2 �

y(2 � y), b(y) = (6 � y(6 � y))/a(y).
One observes that the magnitude B of the cos 2� asym-

metry, where � = �T��?, is determined by h? g
1 and that

if Q2 and/or M2
Q are of the same order as K2

?, the coe�-

cient B is not power suppressed. Since h? g
1 is completely

unknown, we estimate the maximum asymmetry that is
allowed by the bound:

|h? g(2)
1 (x)|  hp2

T i
2M2

fg
1 (x) , (5)

that we derived from the spin density matrix given in
[9] in the way presented in Ref. [16]. The superscript
(2) denotes the n = 2 transverse moment. Trans-
verse moments of TMDs are defined as: f (n)(x) ⌘R

d2pT

�
p2

T /2M2
�n

f(x, p2
T ) (a suitably chosen regular-

ization is understood, e.g. as discussed in appendix B
of [17]). If we select Q2 = M2

Q = K2
?/4, y1 = y2, the

asymmetry ratio

����
R

d2qT q2
T cos 2(�T � �?) d�R
d2qT q2

T d�

���� =
R

dq2
T q4

T |B|
2M2

R
dq2

T q2
T A

, (6)

is maximally around 13%, which we view as encouraging.
If one keeps the lepton plane angle �`, there are other

azimuthal dependences such as a cos 2(�` � �T ), but its
bound is at least 6 times smaller than on cos 2(�T ��?).

The cross section for the process e h ! e0 jet jet X
can be calculated in a similar way. The correspond-
ing expressions can be obtained from Eqs. (3) and (4)
with MQ = 0. One can then also replace the rapidities
of the outgoing particles, yi, with the pseudo-rapidities

[Boer, Brodsky, Mulders, Pisano, 11; Metz, Zhou, 11]
Probing the Linearly Polarized Gluon distribution h⊥g

1 (x, q2
⊥) at EIC.

Due to linearly polarized gluon distribution, there could be the analog of elliptic flow v2 in
DIS as well. [Dumitru, Lappi, Skokov, 15]
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FIG. 1: Comparison between HERMES [27] and preliminary COMPASS data [28] for the (a.) z and (b.) Ph⊥ dependence of
Eq. (3) with a proton target and π+ and h+ as final state hadrons respectively. The solid line is the fit from Ref. [22]. The
dashed curve is the result of evolving to the COMPASS scale using the full TMD-evolution of Ref. [16].

Analysis and Discussion: As input distributions,
we use the already existing Gaussian parametrizations of
the Torino group [22], relevant for low ⟨Q2⟩Hermes ≃ 2.4
GeV2 and typical for the HERMES experiment. These
earlier fixed scale fits were done at leading order in QCD
and neglecting the QCD evolution of the TMDs, which
was not available at that time. We note that the anal-
ysis of Ref. [22] also uses deuteron data [32] from the
COMPASS experiment, which corresponds to higher val-
ues of Q2. However, the COMPASS asymmetry [32] on
the deuteron target is very small due to strong cancel-
lations between the up and down quark Sivers functions
and thus is not heavily affected by the evolution. We
have verified that the results of the Torino fits are negli-
gibly altered if the deuterium data are excluded and only
HERMES data [27] are used in the fit, and the main re-
sult of our present analysis is not affected.

Our calculations will follow the steps of Ref. [16]. For
gK , we use the functional form gK = 1

2g2b
2
T with g2 =

0.68 GeV2 [33], which was obtained by fits performed
using Drell-Yan data. In Eq. (4), this corresponds to
using C1 = 1.123 and bmax = 0.5 GeV−1. All anomalous
dimensions and K̃ are calculated to lowest non-vanishing
order as in Refs. [14, 15].

In Fig. 1(a,b), we show the evolution using the full
TMD-factorization approach as expressed in Eq. (4),
where the evolution is due to the terms in the expo-
nential. The evolution is applied to the most recent
Torino fits [22] as a function z and Ph⊥ , and use
hard scales corresponding to both HERMES data [27]
and recent preliminary COMPASS data [28]. The re-
sult of the evolution is compared with the data. The
x-dependent asymmetry is not ideal for the comparison
because there are strong correlations between x and Q2.
(Recall Q2 ≃ xys.) However, z or Ph⊥ dependent asym-
metries are measured at almost the same hard scales,

namely ⟨Q2⟩Hermes ≃ 2.4 GeV2 and ⟨Q2⟩COMPASS ≃ 3.8
GeV2, so we focus on the Sivers asymmetry as a func-
tion of these variables. (For the preliminary h+ COM-
PASS data that we use, ⟨Q2⟩ varies between 3.63 GeV2

and 3.88 GeV2, in the range of z from 0.2 to 0.7. The
corresponding variation in our calculation is negligible
relative to the variation between the HERMES and pre-
liminary COMPASS data sets.) We observe that includ-
ing QCD evolution leads to excellent consistency between
the HERMES [27] and preliminary COMPASS data [28],
without the need for further fitting. The two data sets
correspond to different ranges in x, and this could be
partly responsible for the variation. A similarly fast evo-
lution has not been seen so far in the Collins Single Spin
Asymmetry [28, 34], suggesting a more complicated in-
terplay between bT , x and z dependence. We leave a
careful consideration of these issues to future studies.
Nevertheless, we find the early success of the compari-
son in Fig. (1) encouraging, especially as leading order
fits [19, 21, 22] fail to reproduce COMPASS proton data
[28] sufficiently well. Still, we caution that future fits will
need to account for the x-dependence as well.

A critical point is that the information about the non-
perturbative evolution contained in gK is taken from the
measurement of a totally different observable, at much
higher energy scales [33] (unpolarized Drell-Yan scatter-
ing up to Tevatron energies). In Fig. 1(b) we show a
similar plot but for the Ph⊥ dependence. That the same
gK successfully describes TSSA at HERMES and COM-
PASS is compelling evidence for the universality of gK

predicted by the TMD-factorization theorem.

In Fig. 2, we show the evolution of the full asymmetry
to higher values of Q2. Note that, although Refs. [15, 16]
report a strong suppression of the unpolarized TMDs and
the Sivers function itself with increasing Q2, the TSSA is
not as heavily suppressed. Therefore, it may be expected

4
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FIG. 2: Sivers evolution in Q2, integrated over x, z and Ph⊥.

that the Sivers SSA remains significant at the higher Q
values of experiments planned at the Relativistic Heavy
Ion Collider (RHIC) and the EIC. Still, the QCD evolu-
tion effects are clearly non-negligible and should be cor-
rectly included in future extractions. Ref. [9] predicts a
roughly ∼ 1/

√
Q suppression for the peak of the Sivers

asymmetry as a function of transverse momentum, for
large Q2 >∼ 10 GeV2. We find that, for the full asymme-
try integrated over all transverse momentum, a power-
like scaling law does not provide a good description in
the range of Q in Fig. 2. Generally, we find that the evo-
lution leads to suppression that is faster than ∼ 1/

√
Q,

but slower than ∼ 1/Q2. We caution, however, that a
completely correct treatment at large Q must include the
Y -term in Eq. (2), and it is possible that this will weaken
the rate of the suppression.

To conclude, we remark that it is important for future
theoretical calculations to not only explain experimen-
tal results, but also to make precise pQCD-based pre-
dictions that can be tested against future data at larger
Q. With this in mind, we view the success of the TMD-
factorization treatment in explaining the HERMES and
COMPASS as highly encouraging.
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SSA in SIDIS as a probe to the quark Sivers function f⊥1T

2

fixed-scale fits for unpolarized TMDs and the Sivers func-
tion.

Existing extractions of the Sivers function using the

TSSA, A
sin(φh−φS)
UT , have been performed using experi-

mental data at fixed scales [17–22]. These extractions
provide interesting information about TMD effects at the
fixed scales where they are performed; however, without
a reliable way to evolve them to different scales, their
predictive power remains limited.

The purpose of this letter is to demonstrate that by
using QCD evolved TMDs one can explain an observed
discrepancy between HERMES and COMPASS data and
for the first time make predictions for upcoming experi-
ments at higher energy scales on the basis of a complete
and correct treatment of evolution for the TMDs.

Definitions and Notation: The differential cross
section for SIDIS, l(l) + N(P, S) → l(l′) + h(Ph) + X
is [23–25]

dσ

dxdydzdφhdφSPh⊥dPh⊥
=

α2y

2zQ4
M LµνWµν (1)

where Ph⊥ is the transverse momentum of the final state
hadron h, and where we utilize the standard kinematical
variables: q2 = −Q2, x = Q2/2P · q, y = P · q/P · l,z =
P · Ph/P · q. The TMD-factorization formula for SIDIS
in terms of well-defined TMD PDFs is [14]

Wµν =
∑

f

|Hf (Q2, µ)|µν

×
∫

d2pT d2KT δ(2)(zpT + KT − P h⊥)

× Ff/P ↑(x, zpT , S; µ, ζF )Dh/f (z, KT ; µ, ζD)

+ Y (Ph⊥, Q) , (2)

where all non-perturbative information is encoded in
the TMD PDF Ff/P ↑ and the TMD FF Dh/f while
|Hf (Q2, µ)|µν is a perturbatively calculable hard part.
The Y (Ph⊥, Q)-term gives the correct treatment of the
cross section at high Ph⊥ ∼ Q in terms of collinear factor-
ization. As is common, the renormalization scale is set to
µ = Q. The parameters ζF , ζD, which are related to the
regularization of rapidity divergences, obey ζF ζD ∼ Q4.
(Consistency with perturbation theory requires µ,

√
ζF

and
√

ζD each to be of order O(Q).)
The Sivers asymmetry is defined as a the ratio of cross

section combinations:

A
sin(φh−φS)
UT =∫
dφhdφs2 sin(φh − φS)(σ(φh, φS) − σ(φh, φS + π))∫

dφhdφS(σ(φh, φS) + σ(φh, φS + π))
.

(3)

In the numerator, the integration over azimuthal angles
with a sin(φh − φS) weighting factor projects out the

Sivers effect. The numerator and denominator may also
be integrated over x, z and/or Ph⊥ depending on the
particular combination of variables one is interested in.

The asymmetry is obtained by applying the TMD-
factorization in Eq. (2) to obtain cross sections in Eq. (3).
The calculations themselves are typically done in trans-
verse coordinate bT -space in terms of structure functions,
whose relations to the differential cross section are given
in Ref. [26]. In the case of the Sivers function, the general
expression for the evolved TMD in coordinate space was
found in Ref. [16] to be

F̃ ′ ⊥ f
1T (x, bT ; Q, ζF ) = F̃ ′ ⊥ f

1T (x, bT ; Q0, Q
2
0)

× exp

{
ln

Q

Q0
K̃(b∗; µb) +

∫ Q

Q0

dµ′

µ′

[
γF (g(µ′); 1)

− ln
Q

µ′ γK(g(µ′))
]

+

∫ µb

Q0

dµ′

µ′ ln
Q

Q0
γK(g(µ′)) − gK(bT ) ln

Q

Q0

}
. (4)

Analogous formulas hold for the unpolarized TMDs.
The symbols, γK and γF , are perturbatively calculable
anomalous dimensions, K̃(b∗; µb) is the perturbatively
calculable CS kernel written in terms of b∗ which is the
prescription for matching to the region where 1/bT can be
treated as a perturbatively large scale. We use the usual
prescription of [5] where b∗ = bT /

√
1 + b2

T /b2
max and

µb = C1/b∗, and bmax and C1 are parameters to be spec-

ified later. Note that it is the derivative F̃ ′q⊥
1T (x, bT ; Q, ζ)

of the QCD evolved coordinate-space Sivers function with
respect to bT that appears in Eq. (4) for the evolution.
Q0 is the starting scale for the evolution. The non-
perturbative but universal and scale-independent func-
tion gK(bT ) describes the behavior of K̃(bT ; µb) in the
non perturbative region at large bT . An important
prediction from the TMD-factorization theorem is that
gK(bT ) is universal, not only between different processes,
but also between all different types of quark TMDs (both
PDFs and FFs).

For this letter, we assume that Q is low enough that
we can neglect the Y -term in Eq. (2) [15]. Furthermore,
we use a Gaussian ansatz to parametrize the input distri-
bution F̃ ′ ⊥ f

1T (x, bT ; Q0, Q
2
0), though this means that we

do not utilize the fact that at larger Ph⊥ ≫ ΛQCD the
TMD PDFs are related to collinear distributions through
perturbative coefficient functions. (In the Sivers case,
this involves the Qiu-Sterman function [29, 30].) Still, in
Ref. [15] it was shown that a Gaussian ansatz provides
a good description of the evolved Sivers function for the
low region of transverse momentum and moderate hard
scales we are interested in for this letter. Several groups
have parametrized the polarized and unpolarized TMD
PDFs and FFs at fixed scales in terms of simple Gaussian
fits [17, 19–22, 31], and these may be used as the input
functions for the evolution.
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𝑷𝑻
𝒉𝟏 

𝑷𝑻
𝒉𝟐 

Gluon information can be 
extracted with the hadron pairs 
from the quark-antiquark jet. 

How to access the gluon information 
in DIS collisions? 

1. Tag photon-gluon fusion events. 
2. Find back-to-back hadron pairs 

from the quark-antiquark jet. 
3. Reconstruct the gluon dynamics 

with the hadron pair 
information. 

Back-to-back limit: 
PT’ =|PT

h1-PT
h2|/2  

kT’ = |PT
h1+PT

h2|  
kT’ << PT’ 

where the subscript “U” represents the unpolarized electron
beam and “T” indicates the transverse polarization of the
proton beam. ϕkS ¼ ϕkT − ϕS stands for the angular differ-

ence between the total dihadron transverse momentum k⃗T
and the polarized proton spin direction S⃗⊥. The amplitude of
the SSA is proportional to the corresponding Sivers function
divided by the unpolarized parton distributions.

III. MONTE CARLO SIMULATION SETUP

In this section, we will describe the setup for our event
generation. We use the PYTHIA 6.4 Monte Carlo (MC)
program [32] to simulate the unpolarized cross section as
expected at an EIC. The PYTHIA generator has been found
to reproduce the charged and open charm particle produc-
tion in the electron-proton collisions at HERA. The
comparison of the HERA data [33,34] and the output of
the tuned PYTHIA MC for charged particles and D" mesons
is shown in Figs. 2 and 3. Based on this reasonable
description of the unpolarized DIS cross section, we will
discuss our strategy to obtain the SSA based on weighting
the unpolarized results from PYTHIA.
In the simulation, we model the amplitude of the

asymmetry as an incoherent superposition of all contrib-
uting subprocess on an event-by-event basis. For every
event, a weighting factor is obtained according to the
kinematics and parton flavor as follows:

w ¼
ΔNfa=p↑ðx; k⊥; Q2Þ
2fa=pðx; k⊥; Q2Þ

: ð5Þ

At the end, the Monte Carlo asymmetry can be understood
as the weighted sum of the asymmetry weights from signal

(gluon-initiated channels) and background (quark-initiated
channels) processes similar to the strategy used in Ref. [35]:

AUT ¼ Rg
ΣNg
i wi

Ng
þ Rq

ΣNq
i wi

Nq
; ð6Þ

in which Ng and Nq indicate the number of gluon- and
quark-initiated events in the analyzed event sample. The
corresponding event fraction is thus obtained as Rg ¼
Ng=ðNg þ NqÞ and Rq ¼ Nq=ðNg þ NqÞ. In the experi-
ment, it is very hard to reliably separate different subpro-
cesses. Therefore, the fractions of events from different
subprocesses are modeled using PYTHIA in this analysis. A
validation of this weighting method against experimental
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FIG. 1. A schematic illustration of the kinematic variables
involved in this measurement.
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[BX, Diehl, 12; Zheng, Aschenauer, Lee, Xiao, Yin, 18] indicates a couple of percent of
SSA at EIC.

SSA in this process as a probe to the gluon Sivers function f⊥1T

II. SINGLE SPIN ASYMMETRY ARISING FROM
THE GLUON SIVERS EFFECT

The Sivers function describes the distribution of unpo-
larized partons with flavor a inside a transversely polarized
proton with mass Mp and can be expressed following the
Trento convention in Ref. [28] as

f̂a=p↑ðx; k⊥Þ ¼ fa=pðx; k⊥Þ þ
1

2
ΔNfa=p↑ðx; k⊥ÞS⃗ · ð

ˆ⃗P× ˆ⃗k⊥Þ:

ð1Þ

The first term represents the axially symmetric contri-
bution from the unpolarized parton distribution, while
the second term ΔNfa=p↑ðx; k⊥Þ generates a distortion
away from the center in the number density of unpolarized
partons with an intrinsic transverse momentum k⃗⊥. The
azimuthal dependence of this distortion is given by

S⃗ · ð ˆP⃗ × ˆk⃗⊥Þ, where P⃗ and S⃗ are the polarized proton
three-momentum and spin polarization vector, respectively.
The notation ΔNfa=p↑ðx; k⊥Þ is related to the Sivers
function denoted as f⊥a

1T ðx; k⊥Þ in the relation
ΔNfa=p↑ðx; k⊥Þ ¼ − 2k⊥

Mp
f⊥a
1T ðx; k⊥Þ [29].

The production of high-transverse-momentum charged
hadron pairs or dijets in DIS through γ%g → qq̄ is dominated
by gluons, although it may also have some contribution from
the quark channel depending on the process measured. The
cross section can be calculated in an effective kt factorization
framework at leading order as shown in Ref. [30]. If k1 and
k2 are the four-momenta of the outgoing quarks, one can
obtain the dihadron cross section as a generalization of the
unpolarized case [31] with the transverse momentum imbal-
ance defined as k⊥ ¼ jk⃗1⊥ þ k⃗2⊥j and the transverse
momentum scale as P⊥ ¼ jk⃗1⊥ − k⃗2⊥j=2:

dσγ
%þp↑→h1þh2þX
tot

dzh1dzh2d2ph1⊥d2ph2⊥
¼

Z
1−zh2

zh1

X

q

dzq
zqð1 − zqÞ
z2h2z

2
h1

d2p1⊥d2p2⊥f̂g=p↑ðx; k⊥Þ

×Hγ%g→qq̄
tot ðzq; k1⊥; k2⊥ÞDh1=q

!
zh1
zq

; p1⊥

"
Dh2=q̄

!
zh2

1 − zq
; p2⊥

"
; ð2Þ

where zq is the momentum fraction of the produced quark q with respect to the incoming virtual photon andHγ%g→qq̄
tot gives

the combined hard factor that incorporates both the longitudinal part Hγ%Lg→qq̄ ¼ αsαeme2q
8ŝQ2

ðŝþQ2Þ4 and transverse

part Hγ%Tg→qq̄ ¼ αsαeme2q
ŝ2þQ4

ðŝþQ2Þ4 ð
û
t̂ þ

t̂
ûÞ of the virtual photon. Equation (2) can be further simplified using the condition

k⊥ ≪ P⊥ known as the correlation limit [30]. Equation (2) can thus be expressed as

dσγ
%þp↑→h1þh2þX
tot

dzh1dzh2d2ph1⊥d2ph2⊥
¼

Z
1−zh2

zh1

X

q

dzq
z2qð1− zqÞ2

z2h2z
2
h1

d2p1⊥d2p2⊥αsαeme2q
½ðz2q þ ð1− zqÞ2ÞðP4⊥ þ ϵ4fÞ þ 8zqð1− zqÞP2⊥ϵ2f'

ðP2
⊥ þ ϵ2fÞ4

× f̂g=p↑ðx; k⊥ÞDh1=q

!
zh1
zq

; p1⊥

"
Dh2=q̄

!
zh2

1− zq
; p2⊥

"
; ð3Þ

in which ϵ2f is related toQ
2 as ϵ2f ¼ zqð1 − zqÞQ2. Choosing

the center-of-mass frame of the exchanged virtual photon
and the proton, in which the proton beam with momentum P⃗
is moving in the−z direction, one can obtain an explicit form
of the mixed vector product in Eq. (1) as S⃗ · ð ˆP⃗ × ˆk⃗⊥Þ ¼
sinðϕk − ϕSÞ with ϕk being the azimuthal angle of k⃗⊥. A
factorized Gaussian parametrization has been adopted for the
transverse-momentum-dependent unpolarized parton distri-

bution function fg=pðx; k⊥Þ ¼ fg=pðxÞ e
−k2⊥=hk2⊥i

πhk2⊥i
and fragmen-

tation function Dðz; p⊥Þ ¼ DðzÞ e
−p2⊥=hp2⊥i

πhp2
⊥i

.

There exists a strong correlation between the kinematics
of the back-to-back hadron pair and its parent quarks.

Therefore, one can use the variables PT ¼ jp⃗h1⊥ − p⃗h2⊥j=2
and kT ¼ jp⃗h1⊥ þ p⃗h2⊥j, which are measurable at the
hadron level, to access the underlying parton kinematic
variables P⊥ and k⊥. A schematic illustration of the encoded
kinematic variables is shown in Fig. 1. In Sec. IV, we study
the precision to which the measurable hadron-level variables
represent the parton kinematics. The GSF can be studied in
the SSA for dihadron production as follows:

AUTðϕkS; kTÞ ¼
dσ↑ðϕkS; kTÞ − dσ↓ðϕkS; kTÞ
dσ↑ðϕkS; kTÞ þ dσ↓ðϕkS; kTÞ

∝
ΔNfg=p↑ðx; k⊥Þ
2fg=pðx; k⊥Þ

; ð4Þ
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processes in the small-xB region. The fraction of quark-
initiated processes grows rapidly as xB approaches 0.1
and with increasing Q2. This behavior with Q2 is due to
the fact that more high-pT hadrons are generated through
QCD radiation, which has an increased probability with
increasing Q2.
In particular, we note that an understanding of the gluon

Sivers function requires measuring its dependence on xB
and Q2. Figure 11 compares the SSA for charged hadron
pairs assuming that the magnitude of the gluon Sivers
function is 5% of its positivity bound (solid circles) and the
SIDIS1 set (solid triangles) as well as no gluon Sivers
contribution, but a quark Sivers contribution (open circles).
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Figure 1: (Color online) Projection on the DD̄ pair single spin asymmetry dependence varying with fSk0

shown with different gluon Sivers magnitude. Vertical bar represents the statistical error obtained assuming
the kinematic cut |hp/K

Lab | < 3.5, pp/K
T Lab > 0.2 GeV, zp/K > 0.1, k

0
T < 0.7P

0
T , 0.01 < y < 0.95 and 1GeV2 <

Q2 < 20GeV2 at the electron-proton beam energy 20 GeV⇥ 250 GeV, if the total luminosity Lint = 20 fb�1.

fraction of the involved particles taken from the exchanged virthal photon must be zh > 0.1. The
corresponding estimation of the projected statistical resolution has been shown in Fig. 3 if the total
statistics amounts to Lint = 20 fb�1.

 [GeV]
T

p
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 fr
ac

tio
n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LODIS
PGF
QCDC
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The selection of K+K� pair is employed to maximize the g⇤g ! ss̄ contribution, which is
more favored for the gluon dynamics study. The identification of charged kaon has been assumed
to be applicable only within the range of |hLab| < 3.5. With all the experimental considerations,
the projected statistical uncertainty compared to the expected signal size can be found in Fig. 4
assuming an integrated luminosity Lint = 20 fb�1.

4.3 Discussions

By confronting the expected signal size of all three possible probes discussed above and the
EIC projections, one can compare the feasibility and signal sensitivity of these measurements to
gluon Sivers effect with a variation of statistics assumption. The gluon Sivers sensitivity largely
relies on the fraction of gluon channels contributing to the measurement. The detailed gluon chan-
nel fraction can be collected as wPGF

DD̄ = 99.4%,wPGF
K+K� = 92.7%,wPGF

dihadron = 80.0% from PYTHIA
simulation. Based on the kinematic cuts and binning method discussed in the last section, we

5

data from COMPASS [36] is discussed at the end of this
section (see Fig. 5).
The parametrization of the Sivers function is given in a

factorized form as

Δfa=p↑ ¼2N aðxaÞfa=pðxa;Q2Þhðk⊥Þ
e−k

2
⊥=hk

2
⊥i

πhk2⊥i
; ð7Þ

N aðxaÞ ¼ Naxαað1 − xÞβa ðαa þ βaÞðαaþβaÞ

ααaa ββaa
; ð8Þ

hðk⊥Þ ¼
ffiffiffiffiffi
2e

p k⊥
M1

e−k
2
⊥=M

2
1 ; ð9Þ

in which fa=pðxa;Q2Þ is the unpolarized parton distribu-

tion, N aðxaÞ and hðk⊥Þ e
−k2⊥=hk2⊥i

πhk2⊥i
describe the x and k⊥

dependence of the Sivers function. The magnitude of the
asymmetry from background contributions is calculated
from the quark Sivers function using the recent fits in
Ref. [37]:

Nuv ¼0.18; αuv ¼1.0; βuv ¼6.2;

Ndv ¼−0.52; αdv ¼1.9; βuv ¼10.0;

Nū¼−0.01; Nd̄¼−0.06; M2
1¼0.8GeV2: ð10Þ

For the gluon Sivers function we utilize two models as
input to our study. The first model is the SIDIS1 set
obtained in the fit in Ref. [18], which follows a similar
parametrization form as the quark Sivers function with the
parameters given by

Ng ¼ 0.65; αg ¼ 2.8; βg ¼ 2.8; M2
g ¼ 0.43 GeV2:

ð11Þ

The second gluon Sivers model relies on the positivity
bound assumption used in Ref. [38]:

f⊥g
1T ¼ −

2σMp

k2⊥ þ σ2
fgðx; k⊥Þ; σ ¼ 0.8 GeV; ð12Þ

in which the positivity limit is saturated when k⊥ ¼
0.8 GeV. We will use 10% and 5% of the positivity
bound to study quantitatively the measurability of the
gluon Sivers function. We calculate the weight of every
event according to the inputs discussed here to obtain the
magnitude of the asymmetry in the final state. An example
of the first k⊥ moment of the input Sivers distribution
ΔNfð1ÞðxÞ ¼

R
d2k⊥

k⊥
4mp

ΔNfa=p↑ðx; k⊥Þ is shown in Fig. 4.
Figure 4(a) shows the quark Sivers functions used to
estimate the background contribution, while the gluon
Sivers functions are shown in Fig. 4(b). For the current
parametrizations the quark Sivers functions have a maxi-
mum for x > 0.1 for the valence quarks and become
negligible in the small-x regime. The magnitude of the
sea-quark Sivers functions is small over the entire x range.
It is noticeable that the gluon Sivers functions based on
the positivity bound assumption and SIDIS1 set have quite
different functional forms in x.
We provide in Fig. 5(a) a comparison of the charged

hadron asymmetry measured by the COMPASS experiment
[36] with the asymmetry obtained from weighting PYTHIA
events according to the method described above with the
quark Sivers functions. It is not surprising to see that
radiation effects modeled by the parton shower mechanism
in PYTHIA are quite weak at the COMPASS energy. The
comparison also shows that one can describe both positive
and negative charged hadron asymmetries from COMPASS
with the event weighting method.
It should be explicitly noted that the parametrizations of

the Sivers asymmetry discussed here are not accounting for
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FIG. 4. The first k⊥ moment xΔNfð1ÞðxÞ of the Sivers function
used in this work for quarks (a) and gluons (b) varying with x at
the scale Q2 ¼ 4 GeV2. Sivers moments for u, d, ū and d̄ are
displayed by the black solid, black dotted, red solid, and red
dotted lines in panel (a). The solid, dashed and dotted lines in
panel (b) represent the gluon Sivers function with magnitudes of
10% and 5% of the positivity bound, and with the SIDIS fit from
Ref. [18], respectively.
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