Probing Gluon TMDs at EIC

Bo-Wen Xiao

Institute of Particle Physics, Central China Normal University

Various types of TMDs

gluon pol.				
		U	L	linear
\%	U	f_{1}^{g}		$h_{1}^{\perp g}$
\%	L		$g_{1 L}^{g}$	$h_{1 L}^{\perp g}$
筸	T	$f_{1 T}^{\perp g}$	$g_{1 T}^{g}$	$h_{1}^{g}, h_{1 T}^{\perp g}$

■ Probe unpolarized TMDs via h and $h h$.
■ From spin-asymmetries, we can study spin-dependent TMDs such as the Sivers function $f_{1 T}^{\perp}$.

A Tale of Two Gluon Distributions

In terms of operators (TMD def. [Bomhof, Mulders and Pijlman, 06]), two gauge invariant gluon definitions: [Dominguez, Marquet, Xiao and Yuan, 11]
I. Weizsäcker Williams gluon distribution:

$$
x G_{\mathrm{WW}}\left(x, k_{\perp}\right)=2 \int \frac{d \xi^{-} d \xi_{\perp}}{(2 \pi)^{3} P^{+}} e^{i x P^{+} \xi^{-}-i k_{\perp} \cdot \xi_{\perp}} \operatorname{Tr}\langle P| F^{+i}\left(\xi^{-}, \xi_{\perp}\right) \mathcal{U}^{[+] \dagger} F^{+i}(0) \mathcal{U}^{[+]}|P\rangle
$$

II. Color Dipole gluon distributions:

$$
x G_{\mathrm{DP}}\left(x, k_{\perp}\right)=2 \int \frac{d \xi^{-} d \xi_{\perp}}{(2 \pi)^{3} P^{+}} e^{i x P^{+} \xi^{-}-i k_{\perp} \cdot \xi_{\perp}} \operatorname{Tr}\langle P| F^{+i}\left(\xi^{-}, \xi_{\perp}\right) \mathcal{U}^{[-] \dagger} F^{+i}(0) \mathcal{U}^{[+]}|P\rangle
$$

- The WW gluon distribution is the conventional gluon distributions.
- The dipole gluon distribution has no such interpretation.
- Two topologically different gauge invariant definitions.

■ Same after integrating over k_{\perp};

A Tale of Two Gluon Distributions

Measuring the gluon distributions in various processes I. Weizsäcker Williams gluon distribution; II. Color Dipole gluon distributions.

- Modified Universality for Gluon Distributions:

	Inclusive	Single Inc	DIS dijet	$\gamma+$ jet	dijet in pA
$x G_{\mathrm{WW}}$	\times	\times	$\sqrt{ }$	\times	$\sqrt{ }$
$x G_{\mathrm{DP}}$	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$	$\sqrt{ }$

$\times \Rightarrow$ Do Not Appear. $\sqrt{ } \Rightarrow$ Apppear.

Semi-Inclusive DIS

Study unpolarized quark TMDs in the Breit frame ('brick wall' frame) in SIDIS

- In the Breit frame $q^{\mu}=(0,0,0,-Q), k=\left(k_{0}, k_{\perp}, k_{3}=Q / 2\right), z_{h} \equiv \frac{p \cdot P}{q \cdot P}$.
- We need to measure the recoiled electron to reconstruct the incoming virtual momentum.

Dijet production in DIS

■ Back-to-back correlation measurement $C(\Delta \phi)$: [Zheng, Aschenauer, Lee and BX, 14] Unique golden measurement for the Weizsäcker Williams gluon distributions.

- EIC will be a perfect machine to study gluon saturation inside protons/nuclei.

Linearly Polarized Gluon distribution

$$
\begin{aligned}
& \frac{d \sigma}{d y_{1} d y_{2} d y d x_{B} d^{2} \boldsymbol{q}_{T} d^{2} \boldsymbol{K}_{\perp}}=\delta\left(1-z_{1}-z_{2}\right) \\
& \times \frac{\alpha^{2} \alpha_{s}}{\pi s M_{\perp}^{2}} \frac{\left(1+y x_{B}\right)}{y^{5} x_{B}}\left[A+\frac{\boldsymbol{q}_{T}^{2}}{M^{2}} B \cos 2\left(\phi_{T}-\phi_{\perp}\right)\right] .
\end{aligned}
$$

$$
B^{e h \rightarrow e Q \bar{Q} X}=\sum_{Q} e_{Q}^{2} h_{1}^{\perp g}\left(x, \boldsymbol{q}_{T}^{2}\right) \mathcal{B}^{e g \rightarrow e Q \bar{Q}}
$$

- [Boer, Brodsky, Mulders, Pisano, 11; Metz, Zhou, 11]

Probing the Linearly Polarized Gluon distribution $h_{1}^{\perp g}\left(x, q_{\perp}^{2}\right)$ at EIC.

- Due to linearly polarized gluon distribution, there could be the analog of elliptic flow v_{2} in DIS as well. [Dumitru, Lappi, Skokov, 15]

Transverse single spin asymmetry (SSA) in SIDIS

Extracting the quark Sivers function via SSA in SIDIS

- [Aybat, Prokudin and Rogers, 12] indicates a couple of percent of SSA at EIC.
- SSA in SIDIS as a probe to the quark Sivers function $f_{1 T}^{\perp}$

$$
\begin{aligned}
& A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)}= \\
& \frac{\int d \phi_{h} d \phi_{s} 2 \sin \left(\phi_{h}-\phi_{S}\right)\left(\sigma\left(\phi_{h}, \phi_{S}\right)-\sigma\left(\phi_{h}, \phi_{S}+\pi\right)\right)}{\int d \phi_{h} d \phi_{S}\left(\sigma\left(\phi_{h}, \phi_{S}\right)+\sigma\left(\phi_{h}, \phi_{S}+\pi\right)\right)}
\end{aligned}
$$

Transverse single spin asymmetry (SSA) in SIDIS

Extracting the gluon Sivers function via SSA in SIDIS

- [BX, Diehl, 12; Zheng, Aschenauer, Lee, Xiao, Yin, 18] indicates a couple of percent of SSA at EIC.
- SSA in this process as a probe to the gluon Sivers function $f_{1 T}^{\perp}$

$$
A_{U T}\left(\phi_{k S}, k_{T}\right)=\frac{d \sigma^{\uparrow}\left(\phi_{k S}, k_{T}\right)-d \sigma^{\downarrow}\left(\phi_{k S}, k_{T}\right)}{d \sigma^{\uparrow}\left(\phi_{k S}, k_{T}\right)+d \sigma^{\downarrow}\left(\phi_{k S}, k_{T}\right)} \quad \propto \frac{\Delta^{N} f_{g / p^{\uparrow}\left(x, k_{\perp}\right)}}{2 f_{g / p}\left(x, k_{\perp}\right)}
$$

Transverse single spin asymmetry (SSA) in SIDIS

Extracting the gluon Sivers function via SSA in SIDIS

$$
f_{1 T}^{\perp g}=-\frac{2 \sigma M_{p}}{k_{\perp}^{2}+\sigma^{2}} f_{g}\left(x, k_{\perp}\right), \quad \sigma=0.8 \mathrm{GeV}
$$

