BNL EIC - IR

Holger Witte January 27, 2020

Electron Ion Collider – EIC at BNL

BROOKHAVEN

ENERGY Office of Science

Outline

- Overview IR
- Requirements / Considerations

2

- Magnets
- Geometric constraints
- Optics
- Conclusion

EIC at BNL IR: Overview

3

IR Requirements

- BNL EIC IR designed to meet physics requirements
 - Machine element free region: +/- 4.5m main detector
 - ZDC: 60cm x 60cm x 2m @ ~30 m
 - Scattered proton/neutron detection
 - Protons 0.2 GeV < p_t < 1.3 GeV
 - Neutron cone +/- 4 mrad
- Machine requirements
 - Small β_y^* : quads close to IP, high gradients for hadron quads
 - Crossing angle: as small as possible to minimize crab voltage and beam dynamics issues
 - Choice: 25 mrad
 - Synchrotron radiation background
 - No bending upstream for leptons (up to ~50m from IP)
 - Rear lepton magnets: aperture dominated by sync fan

Considerations

- Geometry
 - RHIC tunnel (injection, RHIC magnets, RCS, eSR)

- Experimental hall (IP6?)
- Space for detector
- Physics considerations
 - See previous slide, other talks
- Accelerator/optics
 - Match into existing tunnel
 - Dispersion, chromaticity

Considerations (cont.)

6

- Crab cavities
 - Location
 - Geometry
 - Phase advance
- Engineering
 - Magnets: feasibility
 - Cryostating
 - Utilities
- Project
 - Cost, risk
 - R&D required
 - Vendors

Considerations - Equipment

- Physics
 - Detector
 - ZDC
 - Roman pods
 - Lumi-monitor
 - E-tagger
- Bulky stuff
 - Crab cavities
 - Spin rotators
 - Snakes
 - eSR, RCS
- Has to fit in long./transv. Direction
- All of this is presently in IR section

BNL EIC IR: Forward Direction

8

Name	R1	length	В	grad	B pole	
	[m]	[m]	[T]	[T/m]	[T]	
BOApF	0.043	0.6	-3.3	0	-3.3	
Q1ApF	0.056	1.46	0	-72.608	-4.066	
Q1BpF	0.078	1.61	0	-66.18	-5.162	
Q2pF	0.131	3.8	0	40.737	5.357	
B1pF	0.135	3	-3.4	0	-3.4	

- Requirements for hadron beam direction
 - B0pF: Forward Spectrometer (6 - 20 mrad)
 - Neutron Detector (+/-4 mrad)
 - Roman pots (sensitive 1 to 5 mrad)
 - Mostly interleaved magnets
 - Exception: B0 and Q1BpF/Q2eF
- Large apertures of proton forward magnets
 - See next slide

Hadron Forward - Apertures

BNL EIC IR

- BNL EIC IR fits into RHIC tunnel
- Lattice: sufficient space for crab cavities and spin rotators

10

Tunnel Cross Section

All accelerators fit into the existing tunnel

11

Match to RHIC Ring

- Forward and rear hadron lattice matched into RHIC
- Requires
 - 6 dipoles
 - 17 quads
- Repurpose as many RHIC magnets as possible

IR Magnets - Overview

- Three groups of superconducting magnets
 - All NbTi
- (Also: normal conducting magnets, not addressed here)

B0pF Spectrometer Magnet

14

- Superferric 1.3T magnet
 - Fixed field
 - Option: normal conducting
- Aperture: 0.23x0.5m²
- Electrons: 15T/m gradient
 - In B0pF aperture
 - Requires cancellation dipole field
 - Bucking coil and iron collar

Q2pF – Collared Magnet

- Hadron quadrupole
 - Gradient: 41 T/m
 - 3.8m long
 - Aperture 262 mm
 - e-beam: 36-42cm distance
- Return yoke: 1.2x0.8 m²
- Field-free region for electrons
- Magnet limitations
 - Gradient/field
 - Aperture
 - Stray field

Q2pF Simulation Results

16

Cold Mass Concept

Cold Mass in Full Iron Yoke

- Outer yoke stacked blocks. Place cold mass in half yoke.
- Total magnet weight ~68,000 lbs [30,800 kg]
- Support of yoke? • ۲ A A SST SHELL SECTION A-A \bigcirc 0 IRO • SS IRO Ν

ummi

IR Development

- Core group
 - Several experts matrixed (C-AD, NSLSII, SLAC)
- Meetings
 - Weekly IR meetings
 - Bi-weekly Synrad meetings
 - Future: Integration meetings
- How do we keep track?
 - Sharepoint: meetings, presentations, ...
 - Lattice files with history
 - Concept specification documents
 - Being populated
- How do changes become the baseline?
 - Change control board (CCB)

Baseline Parameters

- Full set of parameters
- Initial vs full
- Hadron and electron
 beam

PARAMETERS	Proton	Electron	Proton	Electron	Proton	Electron		Proton	Electron	P	roton	Electron	
energy, GeV	275	18	275	10	100	10		100	5		41	5	
relativistic factor	293.1	35225.1	293.1	19569.5	106.6	19569.5		106.6	9784.8		43.7	9784.8	
bunch_intensity,E10	20.444	7.294	6.881	17.203	6.881	17.203		4.658	17.203		2.639	13.294	
number_of_bunches	290		1160		1160			1160			1160		
beam_current,A	0.74	0.265	1	2.5	1	2.5		0.68	2.5		0.38 1.9		
rms_normalizemittance,h/v_um	4.6/0.74	845/71.2	2.8/0.45	391/23.9	4.0/0.22	391/25.4		2.7/0.27	196/20.0	1.	9/0.45	196/34.2	
rms_emittance,h/v_nm	15.8/2.5	24.0/2.0	9.6/1.5	20.0/1.2	37.1/2.1	20.0/1.3		25.1/2.6	20.0/2.0	43	.6/10.3	20.0/3.5	
emittance_y/emittance_x	0.159	0.084	0.158	0.061	0.056	0.065		0.102	0.102		0.236	0.175	
beta,h/v_cm	90/4.0	59/5.0	90/4.0	43/5.0	90/4.0	167/6.4		90/4.0	113/5.0	5	0/7.1	196/21.0	
IP_beam_size,h/v_um	119/10.1	119/10.1	93/7.8	93/7.8	183/9.1	183/9.1		150/10.1	150/10.1	19	8/27.1	198/27.1	
K=sgm_y/sgm_x	0.084		0.084		0.05			0.067			0.137		
IP_rms_ang_spread,h/v_urad	133/251	201/201	103/195	215/156	203/227	109/143		167/253	133/202	2	20/380	101/129	
beam-beam_parameter,h/v	0.004/0.002	0.100/0.100	0.014/0.007	0.073/0.100	0.010/0.009	0.075/0.057	(0.015/0.010	0.100/0.066	0.0	15/0.009	0.053/0.042	
longbunch_area,evs	0.68		0.68		0.4			0.4			0.2		
rms_bunch_length,cm	6	0.9	6	2	7	2		7	2		7.5	2	
rms_energy_spread,e-4	6.6	10.9	6.6	5.8	9	5.8		9	6.8		10.4	6.8	
max_space_charge	0.006	neglig.	0.003	neglig.	0.028	neglig.		0.019	neglig.		0.05	neglig.	
Piwinski_angle,rad	5.5	0.8	7.1	2.4	4.2	1.2		5.1	1.5		4.2	1.1	
LongitIBS_time,h	2.1		3.41		2			2.6			3.8		
TransvIBS_time,h	2		2		2.32/2.36			2/4.8		3	.4/2.1		
lumi_factor	0.86		0.86		0.85			0.83			0.93		
luminosity,E33	1.93		10.05		4.35			3.16			0.44		
main RF frequency, MHz	591	591	591	591	591	591		591	591		197	591	
main RF Voltage, MV	18	68	18	20	8.5	20		8.5	13		9	13	
harmonic RF frequency, MZ				1773		1773			1773			1773	
harmonic RF voltage, MV				6.6		6.6	_		4.3			4.3	
SR loss power, MW		10.00		9.00		9.00			3.20			2.47	
synchronous voltage, MV		37.8		3.6		3.6			1.28			1.28	
transverse radiation damping time, m	5	9.2		59.4		59.4			70.1			70.1	
ST (de-)polarization time, h		0.53		9.92		9.92			11.7			11.7	
							_						

https://brookhavenlab.sharepoint.com/:x:/s/e RHIC/bnl&slac/ESBW8F9WAsdMqNAod1r127 YB4wY1r1Xz-T0me06QpZMjPw?e=VHIW1V

21

Summary

• IR developed in collaboration with BNL Physics

22

- · Meets requirements of 'white paper'
- Is there anything we have been missing?
- Many considerations went into this IR
 - Geometric constraints
 - Engineering feasibility
 - Magnets, cryostating
- Changes are possible
 - Need to go through CCB
 - What problem needs fixing?
 - Requires all L2/L3s to sign off

Acknowledgements

Mike Anerella, Elke Aschenauer, J Scott Berg, Alexei Blednykh, John Cozzolino, Dave Gassner, Karim Hamdi, Charly Hetzel, Doug Holmes, Henry Hocker, Alex Jentsch, Alexander Kiselev, Henry Lovelace III, Gary McIntyre, Christoph Montag, Guillaume Robert-Demolaize, Brett Parker, Bob Palmer, Stephen Plate, Mike Sullivan (SLAC), Steve Tepikian, Roberto Than, Peter Thieberger, Qiong Wu

23