Detector design concept of the EIC

Tracking and Vertexing

Olga Evdokimov (UIC)

Inspired by presentations by Y. Furletova, A. Kiselev, B. Surrow, T. Ullrich, E. Sichterman

Outline

- Introduction
 - Foundations & motivation for the EIC program
 - Basics of Deep Inelastic Scattering and DIS kinematics
- EIC accelerator and detector requirements
- Building blocks of EIC multipurpose detector
 - Tracking detectors
 - Vertex reconstruction
 - Calorimeters
 - Detectors for Particle Identification
 - Summary and Tutorial

We are here!

Olga Evdokimov (UIC)

EIC General Purpose Detector Schematics

Major Detector Classes

"Trackers" provide momentum measurements

- Closest to the interaction region are "vertex detectors;" measure/distinguish primary and secondary vertices
- Main or "central" trackers measure momentum of charged particles in the magnetic field by the curvature. But also: direction, electric charge (direction of bend), dE/dx (energy loss per distance)

* "Calorimeters" provide energy measurements

- Electromagnetic Calorimeters measure energy of light EM particles (electrons, positrons, photons) based on electromagnetic showers created by bremsstrahlung and pair production
- Hadronic Calorimeters measure energy of heavier hadronic particles (pions, kaons, protons, neutrons) based on showers created by nuclear (and EM) interactions

Central Region

All "general purpose" collider detectors have similar "onion" structure in the central region
"Stopping" location is the crude form of PID

Trackers – the inner most layers; to avoid E_{loss} before calorimeters – minimal material budget

5

Outline: Trackers

- Introduction to tracking
- History
- Know your technology options:
 - Gaseous detectors
 - Multi-wire chambers
 - Time projection chambers
 - MPGDs
 -

Silicon detectors

- Momentum measurements
 - Energy loss
 - Momentum reconstruction
- Momentum resolution
 - Resolution for a measured track
 - Effects of multiple scattering

- Tracker is from "track," as in trace left by particle
 - To leave a trace, particle must interact with detector material.
 - "Interact"↔ "leave energy"
- Earliest trackers:

Olga Evdokimov (UIC)

CFNS EIC Summer School

7

Emulsion

- Cosmic ray studies: high altitudes, long exposure (months)
- Advantages:
 - images are permanent and can be analyzed under microscope
 - high density- easier to see energy loss and disintegrations.

1937: Nuclear disintegrations

Cloud Chambers

- Ionizing particles are sent through a supersaturated vapor
- Radiation disturbs the vapor causing condensation
 - Track forms along the particle path
 - Tracks can be seen in real time

9

Bubble chambers:

 A vessel filled with a superheated transparent liquid used to detect electrically charged particles moving through

But:

- every interaction must be photographed
- Error-prone manual "digitization"

Spark Chambers

- Developed in ~1940ies.
- A stack of metal plates in a sealed box filled with a helium or neon
- Charged particle ionizes the gas between the plates
- Applied HV between the plates makes sparks visible along trajectory where ionization had happened

Tracking for EIC

Tracking requirements (YR):

- The EIC requires a 4π hermetic detector with low mass inner tracking.
- Excellent momentum resolution in the central detector $(\sigma_{p_T}/p_T(\%) = 0.05p_T \oplus 0.5)$.
- Good momentum resolution in the backward region with low multiple-scattering terms ($\sigma_{p_T}/p_T(\%) \approx 0.1 p_T \oplus 0.5$).
- Good momentum resolution at forward rapidities $(\sigma_{p_T}/p_T(\%) \approx 0.1 p_T \oplus 1 2)$.
- Good impact parameter resolution for heavy flavor measurements ($\sigma_{xy} \sim 20/p_T \oplus 5 \ \mu$ m).

Tracking for EIC

• For full details on tracking requirements see Yellow Report publication:

			Momentum res.	Material budget	Minimum pT	Transverse pointing res.
η						
-3.5 to -3.0			$\sigma_{\rm D}/{\rm p} \sim 0.1\% {\rm xp} \approx 0.5\%$		100-150 MeV/c	
-3.0 to -2.5]	Backward	op/p = 0.1 /8~p @ 0.5 /8		100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 40 µm
-2.5 to -2.0]	Detector			100-150 MeV/c	
-2.0 to -1.5]	Detector	σp/p ~ 0.05%×p ⊕ 0.5%		100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 20 µm
-1.5 to -1.0	1				100-150 MeV/c	
-1.0 to -0.5]					
-0.5 to 0	Central	Barrol	$\sigma_{0}/\sigma \sim 0.05\% x_{0} \approx 0.5\%$	~5% X0 or loss	100,150 MoV/o	$d_{00}(xy) \sim 20/nT \mu m = 5 \mu m$
0 to 0.5	Detector	Darrei	obih ~ 0.00 %~h @ 0.0 %		100-150 MeV/C	ασα(λγ) ~ 20/ρ1 μπ © 5 μπ
0.5 to 1.0]					
1.0 to 1.5]				100-150 MeV/c	
1.5 to 2.0]	Forward	σp/p ~ 0.05%×p ⊕ 1%		100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 20 µm
2.0 to 2.5		Detector			100-150 MeV/c	
2.5 to 3.0]	Delector	$\sigma_0/p \sim 0.1\% xp = 2\%$		100-150 MeV/c	dca(xy) ~ 30/pT μm ⊕ 40 μm
3.0 to 3.5]		op/p = 0.1 /0^p @ 2 /0		100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 60 µm

Ionization Energy Loss

• Most trackers use ionization energy loss dE/dx by particle interacting with detector material (often, this can also be used for PID)

Bethe-Bloch formula:

$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

- Z/A encodes material; but for most ~1/2
- Depends on $\beta \gamma = (p/E)(E/m) = p/m$
- Minimum at $\beta\gamma$ =3-4 ("MIP particle")
- Plateau at high $\beta\gamma$ (after "relativistic rise")

Ionization Energy Loss

• Most trackers use ionization energy loss dE/dx by particle interacting with detector material (often, this can also be used for PID)

Bethe-Bloch formula:

$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

- Examples of typical energy loss at MIP:
 - ✓ 1 meter air: 0.22 MeV
 - ✓ 300µm Si: 0.12 MeV
 - ✓ 1mm iron: 1.1 MeV

Ionization Energy Loss

Since

$$p = mv = m_0 \beta \gamma c$$
$$\frac{dE}{dx} \propto \frac{1}{\beta^2} ln(\beta^2 \gamma^2)$$

- Simultaneous measurement of *dE/dx* and momentum provides PID
- Complication: "Landau tails" large fluctuations towards high losses
 - Remedies: truncated mean;
 log-scale
 Iog-scale

Olga Evdokimov (UIC)

of energy

energy los

Multiwire Proportional Chambers

1992: George Charpak

"For his invention and development of particle detectors, in particular the multiwire proportional chamber"

- Technological breakthrough for trackers: signal is read-out electronically
- Ionization signal read by the nearest wire is proportional to the ionization energy loss by the ionizing particle
- Location of fired wire(s) gives 1D information

Time Projection Chambers

- Main "workhorse" subdetector for STAR and ALICE
- Low material
 3D hit positioning
 PID capabilities
- ✓ Typical resolutions:
 100-400μm (rφ), ≈mm (z)

ALIC

2010/12/08 00:12:1

Time Projection Chambers

- Space-charge issue: MWPCs are used as gas amplification stages; ions produced in the avalanche drift back into TPC active volume "ion backflow." Fast signal from elections and long tail coming from ion cloud
- Gating grid idea: to reduce ion backflow and positive space charge in TPC, gate is open by trigger for a few μs (STAR)

Alternative:

- using Gas Electron Multipliers (GEM) for signal amplification that naturally suppresses ion backflow (ALICE upgrade)
- using a hybrid GEM+ μ Megas for amplification (sPHENIX)

Olga Evdokimov (UIC)

CFNS EIC Summer School

00/00/2021

Time Projection Chambers

- Considered as one of the possible tracker contenders at the EIC for central region
 - Pros: very low mass, provides tracking and PID
 - Cons: need careful tuning of gas mixture; larger volume; NOT a vertex detector

long drift time \rightarrow low rate

large voltages \rightarrow potential discharges

 Currently not under consideration by developing detector proposals (AFAIK) Possible **TPC** location in EIC Multipurpose Detector

Straw Tube Tracker

- Instead of the large gas-filled volume individual cathodes for each wire diameter 4-10mm
- Measures drift time (must know signal arrival time to extract distance)
- Features: high spatial and momentum resolution, PID, low material budget
- Spatial resolution: $\sim 50 100 \,\mu m$
- PANDA: $\sigma_p / p \sim 1 2\%$ (at B = 2 T) $X/X0 \sim 1.25\%$

4636 self-supported straw tubes in 2 semi-barrels

23-27 radial layers in 6 hexagonal sectors

5-19 axial layers (green) in beam direction

CFNS EIC Summer School

Tracking with STT

- Reconstructing x-y position is trivial: tube locations; sufficient granularity
- The tube lengths are up to 4 m
- z-coordinate?

No z coordinate

Good: no ghosts Bad: complicated pattern recognition

Olga Evdokimov (UIC)

CFNS EIC Summer School

08/08/2021 23

Micro Strip Gas Chambers (MSGC)

- MSGC is the "mother" of all Micro-Pattern Gaseous Detectors (MPGDs)
- The first MSGCs date back to 1990es
- The same (simple) general concept has later evolved into µMegas, GEM, and µRWellss
- All these are gas-filled for ionization by a passing charged particle; what is (somewhat) different is how the signal amplification is achieved

Gas Electron Multipliers (GEM)

GEMs are gas-based trackers; novel design feature: a very thin metal-coated polymer film chemically pierced by a high density of holes.

- Typical characteristics:
 - Drift gap: ~a few mm
 - Drift time: ~300ns
 - Spatial resolution ~50 μm

Cons: film breakage

Olga Evdokimov (UIC)

Micro-Mega (µMega)

- Technology allows to make large planar detecting planes
- Metal micromesh creates high-field for avalanche signal amplification
- Spatial resolution: ~50 μm
- ATLAS design example:
 - Short drift gap (a few mm) for primary ionization
 - Single-stage amplification in a high field
 - Capacitive coupling to readout strips through the resistive layer
 - CONS: stretching/breakage

ATLAS New "Small Wheel"

CFNS EIC Summer School

$\mu RWELL Detectors$

 Combines advantages of GEM and µMega, and needs no stretching

- Cylindrical layout (eRD6):
 - HV cathode
 - Drift gap: ~a few mm
 - Spatial resolution: ~50 μm
 - Micro-well layer (similar to a single GEM foil) mounted on a resistive readout board ("foil backed by ring")

Small-strip Thin Gap Chambers

STGS initially designed for ATLAS

- Grid of wires in a gas mixture between two cathode plates
- Dual (strip and pad) readout
- Suitable technology choice for large area planar tracking
- Typical characteristics:
 - Spatial resolution (~100µm)
 - Low material budget (~0.5%Xo per layer)
 - Low cost

Transition Radiation Detectors

- Transition radiation (TR) is produced by a charged particle crossing interface of two media with different dielectric constants
- The probability to emit one TR photon per boundary is of order α~1/137 → multilayer dielectric radiators are used(~ few hundreds of mylar foils)
- Energy of TR photons is 2 40 keV
- Spatial resolution: $\sim 100 200 \,\mu m$
- Total TR energy is proportional to the γ factor with TR radiation onset at $\gamma \sim 1000$
 - electrons are measurable from ~1-2 GeV/c
 - pions from a few hundred GeV/c

TRD for EIC

 TRD R&D goals for EIC: Electron identification (e/h separation) + tracking

• Convert a GEM tracker to TRD:

Test setup at GlueX@JLab

- Change from Argon to Xenon
- Increase drift region up to 2-3 cm
- Add a radiator in the front of each chamber
- Number of layers depends on needs: single layer e/π rejection of 10 with ~90% electron efficiency

eRD22

Olga Evdokimov (UIC)

Gaseous Tracker Options for EIC

TPC + Fast MPGD	Cylindrical MPGD	Drift Chambers /	Planar MPGDs (GEM,
Layer	(Micromegas, µRWELL)	Straw Tubes	Micromegas, µRWELL)
Pros: - momentum res.; - additional dE/dx; - cost - Low material in barrel	Pros: - Space & angular res. - Time resolution (< 10 ns) - Low mat. in end cap - Cost & robustness	Pros: - momentum res.; - additional dE/dx; - cost - Low mat. in barrel	Pros: - Alternative to cylindrical MPGDs arrangement in polygons - Easier fabrication
<u>Cons:</u>	<u>Cons:</u>	Cons:	<u>Cons:</u>
- End cap material	- Momentum res.	- End cap material	- Momentum res.
- calibration space	- Fabrication challenges	- calibration	- Detector space barrel
charge distortion	- Material budget in barrel	- Stability issues	- Material budget in barrel
	KLOE-II GEM hool	ATLAS Straw Tracker	

Gaseous Tracker Options for EIC

	Planar MPGDs (GEM, Micromegas, μRWELL)	Small TGCs	MPGD-TRDs
Hadron End Cap	<u>Pros:</u> - Momentum & angular res. - Low material (< 0.4X/X0 - Cost & robustness	<u>Pros:</u> - Momentum & angular res. - Cost & robustness	<u>Pros:</u> - Additional tracking - Angular res. for RICH - Additional e/π PID
	- N/A	<u>Cons:</u> - Material budget	Cons: - Available space i.e. radiator thickness
Electron End Cap	Pros: - Momentum & angular res. - Low material (<0.4%) - Cost & robustness	N/A Mainly because of	<u>Pros:</u> - Additional tracking - Complement e PID in electron end cap
	- N/A	material budget	Cons: - Available space i.e. radiator thickness