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Outline

• Introduction 

• Foundations & motivation for the EIC program

• Basics of Deep Inelastic Scattering and DIS kinematics

• EIC accelerator and detector requirements

• Building blocks of EIC multipurpose detector

• Tracking detectors

• Vertex reconstruction

• Calorimeters

• Detectors for Particle Identification 

• Summary and Tutorial

We are here!
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EIC General Purpose Detector Schematics 
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Major Detector Classes

• “Trackers” provide momentum measurements
• Closest to the interaction region are “vertex detectors;” 

measure/distinguish primary and secondary vertices

• Main or “central” trackers measure momentum of charged particles 
in the magnetic field by the curvature. But also: direction, electric 
charge (direction of bend), dE/dx (energy loss per distance)

• “Calorimeters” provide energy measurements 
• Electromagnetic Calorimeters measure energy of light EM particles 

(electrons, positrons, photons) based on electromagnetic showers 
created by bremsstrahlung and pair production

• Hadronic Calorimeters measure energy of heavier hadronic particles 
(pions, kaons, protons, neutrons) based on showers created by 
nuclear (and EM) interactions
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Y. Furletova



Central Region

• All “general purpose” collider detectors have similar “onion” structure in the 
central region                                                “Stopping” location is the crude form of PID

Tracker                EMCal HCal Muon

•

• .

• Trackers – the inner most layers; to avoid 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 before calorimeters – minimal material budget
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A ‘wedge’ of the CMS/LHC
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Outline: Trackers

• Introduction to tracking

• History

• Know your technology options:

• Gaseous detectors

• Multi-wire chambers

• Time projection chambers

• MPGDs

• …

• Silicon detectors

• Momentum measurements

• Energy loss

• Momentum reconstruction

• Momentum resolution

• Resolution for a measured track

• Effects of multiple scattering
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Trackers in HEP 
History

• Tracker is from “track,” as in 
trace left by particle

• To leave a trace, particle 
must interact with detector 
material.

• “Interact”↔ “leave energy”

• Earliest trackers:
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1960, JINR: discovery of anti-sigma-minus-hyperon



Trackers in HEP 
History

Emulsion

• Cosmic ray studies: high 
altitudes, long exposure 
(months) 

• Advantages: 

• images are 
permanent and can 
be analyzed under 
microscope

• high density- easier 
to see energy loss  
and disintegrations.
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1937: Nuclear disintegrations 



Trackers in HEP 
History

Cloud Chambers

• Ionizing particles are 
sent through  a 
supersaturated vapor

• Radiation disturbs the 
vapor causing 
condensation

• Track forms along 
the particle path

• Tracks can be seen 
in real time
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Trackers in HEP 
History

Bubble chambers:

• A vessel filled with a 
superheated 
transparent liquid used 
to detect electrically 
charged particles 
moving through

• But: 

• every interaction 
must be 
photographed

• Error-prone manual 
“digitization”
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1937: Nuclear disintegrations 
1964, BNL: discovery of Omega baryon



Trackers in HEP 
History

Spark  Chambers

• Developed in ~1940ies.

• A stack of metal plates in a 
sealed box filled with a 
helium or neon

• Charged particle ionizes the 
gas between the plates

• Applied HV between the 
plates makes sparks visible 
along trajectory where 
ionization had happened
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Tracking 
Technology 

Evolution
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Credit: Yulia Furletova
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Tracking for EIC

• Tracking requirements (YR):
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Tracking for EIC

• For full details on tracking requirements see Yellow Report publication:
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Ionization Energy Loss

• Most trackers use ionization energy loss 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 by particle interacting with 
detector material  (often, this can also be used for PID)

Bethe-Bloch formula:

• 𝑍𝑍/𝐴𝐴 encodes material; but for most ~1/2

• Depends on 𝛽𝛽𝛽𝛽 = (𝑝𝑝/𝐸𝐸)(𝐸𝐸/𝑚𝑚) = 𝑝𝑝/𝑚𝑚

• Minimum at 𝛽𝛽𝛾𝛾 =3−4   (“MIP particle”)

• Plateau at high 𝛽𝛽𝛾𝛾 (after “relativistic rise”)



Ionization Energy Loss

• Most trackers use ionization energy loss 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 by particle interacting with 
detector material  (often, this can also be used for PID)

Bethe-Bloch formula:

• Examples of typical energy loss at MIP:
1 meter air: 0.22 MeV

300𝜇𝜇m Si: 0.12 MeV

1mm iron: 1.1 MeV



Ionization Energy Loss

• Since

• Simultaneous measurement of 
𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 and momentum 
provides PID

• Complication: “Landau tails” 
large fluctuations towards high 
losses
• Remedies: truncated mean; 

log-scale
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Multiwire Proportional Chambers
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1992: George Charpak

“For his invention and development of particle detectors,
in particular the multiwire proportional chamber”

• Technological breakthrough for trackers: signal is 
read-out electronically

• Ionization signal read by the nearest wire is
proportional to the ionization energy loss by the
ionizing particle

• Location of fired wire(s) gives 1D information Equipotential line and field line in a MWPC



Time Projection Chambers

• Main “workhorse” subdetector for STAR and ALICE

 Low material

3D hit positioning

PID capabilities

Typical resolutions: 

100-400µm (rϕ), ≈mm (z)
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Time Projection Chambers

• Space-charge issue: MWPCs are used as gas
amplification stages; ions produced in the avalanche
drift back into TPC active volume “ion backflow.” Fast
signal from elections and long tail coming from ion
cloud

• Gating grid idea: to reduce ion backflow and positive 
space charge in TPC, gate is open by trigger for a few 
𝜇𝜇𝑠𝑠 (STAR)

• Alternative: 
• using Gas Electron Multipliers (GEM) for signal 

amplification that naturally suppresses ion backflow (ALICE 
upgrade)

• using a hybrid GEM+µMegas for amplification (sPHENIX)
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Time Projection Chambers

• Considered as one of the possible tracker 
contenders at the EIC for central region

• Pros: very low mass, provides tracking and PID 

• Cons: need careful tuning of gas mixture; larger 
volume ;NOT a vertex detector

long drift time → low rate 

large voltages → potential discharges

• Currently not under consideration by 
developing detector proposals (AFAIK)
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Possible TPC location in EIC 
Multipurpose Detector



Straw Tube Tracker

• Instead of the large gas-filled volume –
individual cathodes for  each wire diameter 
4-10mm 

• Measures drift time (must know signal 
arrival time to extract  distance)

• Features: high spatial and momentum 
resolution, PID, low material budget

• Spatial resolution: ~50 − 100 µm

• PANDA: 𝜎𝜎𝑝𝑝 /𝑝𝑝 ~ 1 − 2% (at 𝐵𝐵 = 2 𝑇𝑇)

𝑋𝑋/𝑋𝑋𝑋 ~ 1.25%
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PANDA

4636 self-supported straw tubes 
in 2 semi-barrels

23-27 radial layers in 6 
hexagonal sectors

5-19 axial layers (green) in beam 
direction



Tracking with STT

• Reconstructing x-y position is trivial: 
tube locations; sufficient granularity

• The tube lengths are up to 4 m

• z-coordinate? 
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SST simulations for EIC

No z coordinate 90° “stereo”
Good: resolution
Bad: n2 “ghost” hits

30°“ stereo” (3 layers)
Good: no ghosts
Bad: complicated pattern 
recognition



Micro Strip Gas Chambers (MSGC)

• MSGC is the “mother” of all Micro-
Pattern Gaseous Detectors (MPGDs)

• The first MSGCs date back to 1990es

• The same (simple) general concept 
has later evolved into µMegas, GEM, 
and µRWellss

• All these are gas-filled for ionization 
by a passing charged particle; what is 
(somewhat) different is how the 
signal amplification is achieved
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MPGD option in EIC Detector



Gas Electron Multipliers (GEM)
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Field Map

• GEMs are gas-based trackers; novel design 
feature: a very thin metal-coated  polymer 
film chemically pierced by a high density  of 
holes.

• Typical characteristics: 
• Drift gap: ~a few mm

• Drift time: ~300ns

• Spatial resolution ~50 µm

• Cons: film breakage



Micro-Mega (µMega)

• Technology allows to make large planar 
detecting planes

• Metal micromesh creates high-field for 
avalanche signal amplification 

• Spatial resolution: ~50 µm

• ATLAS design example:
• Short drift gap (a few mm) for primary 

ionization

• Single-stage amplification in a high field

• Capacitive coupling to readout strips 
through the resistive layer 

• CONS: stretching/breakage

08/08/2021Olga Evdokimov (UIC) CFNS EIC Summer School 26

ATLAS New “Small Wheel”



Cylindrical μRWELL

µRWELL Detectors

• Combines advantages of GEM and 
µMega, and needs no stretching

• Cylindrical layout (eRD6):
• HV cathode

• Drift gap: ~a few mm

• Spatial resolution: ~50 µm

• Micro-well layer (similar to a single GEM 
foil) mounted on a resistive readout board 
("foil backed by ring“)
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EIC R&D



Small-strip Thin Gap Chambers

• STGS initially designed for ATLAS

• Grid of wires in a gas mixture between two 
cathode plates

• Dual (strip and pad) readout

• Suitable technology choice for large area 
planar tracking

• Typical characteristics:

• Spatial resolution (~100µm) 

• Low material budget (~0.5%X0 per layer)

• Low cost
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Transition Radiation Detectors

• Transition radiation (TR)  is produced by a charged 
particle crossing interface of two media with 
different dielectric constants

• The probability to emit one TR photon per 
boundary is of order 𝛼𝛼~1/137 →multilayer dielectric 
radiators are used(~ few hundreds of mylar foils)

• Energy of TR photons is  2 - 40 keV 

• Spatial resolution: ~100 − 200 µm

• Total TR energy is proportional to the γ factor with 
TR radiation onset at 𝛾𝛾~1000
• electrons are measurable from ~1-2 GeV/c 

• pions – from a few hundred GeV/c
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Example: ATLAS STT+TRD



TRD for EIC

• TRD R&D goals for EIC: Electron identification 
(e/h separation) + tracking

• Convert a GEM tracker to TRD: 
• Change from Argon to Xenon

• Increase drift region up to 2-3 cm 

• Add a radiator in the front of each 
chamber 

• Number of layers depends on needs: 
single layer ⁄𝑒𝑒 𝜋𝜋 rejection of 10 with 
~90% electron efficiency 
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Test setup at GlueX@JLab

eRD22



Gaseous Tracker Options for EIC
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Gaseous Tracker Options for EIC
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