Introduction to QCD

- Lec. 1: Fundamentals of QCD
- Lec. 2: Matching observed hadrons to quarks and gluons
- Lec. 3: QCD for cross sections with identified hadrons
- Lec. 4: QCD for cross sections with polarized beam(s)

Jianwei Qiu
Theory Center
Jefferson Lab

C) ENERGY

Office of
Science

Polarization and spin asymmetry

Explore new QCD dynamics - vary the spin orientation
\square Cross section:
Scattering amplitude square - Probability - Positive definite

$$
\sigma_{A B}(Q, \vec{s}) \approx \sigma_{A B}^{(2)}(Q, \vec{s})+\frac{Q_{s}}{Q} \sigma_{A B}^{(3)}(Q, \vec{s})+\frac{Q_{s}^{2}}{Q^{2}} \sigma_{A B}^{(4)}(Q, \vec{s})+\cdots
$$

\square Spin-averaged cross section:

$$
\sigma=\frac{1}{2}[\sigma(\vec{s})+\sigma(-\vec{s})] \quad \text { - Positive definite }
$$

\square Asymmetries or difference of cross sections:

- both beams polarized $\quad A_{L L}, A_{T T}, A_{L T}$
- Not necessary positive!

$$
A_{L L}=\frac{[\sigma(+,+)-\sigma(+,-)]-[\sigma(-,+)-\sigma(-,-)]}{[\sigma(+,+)+\sigma(+,-)]+[\sigma(-,+)+\sigma(-,-)]} \text { for } \sigma\left(s_{1}, s_{2}\right)
$$

- one beam polarized $\quad A_{L}, A_{N}$

$$
A_{L}=\frac{[\sigma(+)-\sigma(-)]}{[\sigma(+)+\sigma(-)]} \quad \text { for } \sigma(s) \quad A_{N}=\frac{\sigma\left(Q, \vec{s}_{T}\right)-\sigma\left(Q,-\vec{s}_{T}\right)}{\sigma\left(Q, \vec{s}_{T}\right)+\sigma\left(Q,-\vec{s}_{T}\right)}
$$

Two roles of the proton spin program

\square Proton is a composite particle:
Spin is a consequence of internal dynamics of the bound state

For example, the nucleon-nucleon interaction and shell structure determines the observed nuclear spin states
\Rightarrow Decomposition of proton spin in terms of quark and gluon d.o.f. helps understand the dynamics of a fundamental QCD bound state

- Nucleon is a building block all hadronic matter
(> 95\% mass of all visible matter)
\square Use the spin as a tool - asymmetries:
Cross section is a probability - classically measured

Spin asymmetry - the difference of two cross sections involving two different spin states

Asymmetry could be a pure quantum effect!

Spin of a composite particle

\square Spin:
\diamond Pauli (1924): two-valued quantum degree of freedom of electron
\diamond Pauli/Dirac: $S=\hbar \sqrt{s(s+1)}$ (fundamental constant \hbar)
\diamond Composite particle $=$ Total angular momentum when it is at rest
\square Spin of a nucleus:
\diamond Nuclear binding: $8 \mathrm{MeV} /$ nucleon << mass of nucleon
\diamond Nucleon number is fixed inside a given nucleus
\diamond Spin of a nucleus = sum of the valence nucleon spin
\square Spin of a nucleon - Naïve Quark Model:
\diamond If the probing energy << mass of constituent quark
\diamond Nucleon is made of three constituent (valence) quark
\diamond Spin of a nucleon = sum of the constituent quark spin

State: $\quad|p \uparrow\rangle=\sqrt{\frac{1}{18}}[u \uparrow u \downarrow d \uparrow+u \downarrow u \uparrow d \uparrow-2 u \uparrow u \uparrow d \downarrow+$ perm. $]$
Spin:

$$
S_{p} \equiv\langle p \uparrow| S|p \uparrow\rangle=\frac{1}{2}, \quad S=\sum_{i} S_{i}
$$

Spin of a composite particle

\square Spin of a nucleon - QCD:
\diamond Current quark mass << energy exchange of the collision
\diamond Number of quarks and gluons depends on the probing energy
\square Angular momentum of a proton at rest:

$$
S=\sum_{f}\left\langle P, S_{z}=1 / 2\right| \hat{J}_{f}^{z}\left|P, S_{z}=1 / 2\right\rangle=\frac{1}{2}
$$

\square QCD Angular momentum operator:
Energy-momentum tensor

$$
J_{\mathrm{QCD}}^{i}=\frac{1}{2} \epsilon^{i j k} \int d^{3} x M_{\mathrm{QCD}}^{0 j k} \quad M_{\mathrm{QCD}}^{\alpha \mu \nu}=T_{\mathrm{QCD}}^{\alpha \nu} x^{\mu}-T_{\mathrm{QCD}}^{\alpha \mu} x^{\nu}
$$

\& Quark angular momentum operator:
Angular momentum density

$$
\vec{J}_{q}=\int d^{3} x\left[\psi_{q}^{\dagger} \vec{\gamma} \gamma_{5} \psi_{q}+\psi_{q}^{\dagger}(\vec{x} \times(-i \vec{D})) \psi_{q}\right]
$$

\diamond Gluon angular momentum operator:

$$
\vec{J}_{g}=\int d^{3} x[\vec{x} \times(\vec{E} \times \vec{B})]
$$

Need to have the matrix elements of these partonic operators measured

Current understanding for Proton Spin

The sum rule:

$$
S(\mu)=\sum_{f}\langle P, S| \hat{J}_{f}^{z}(\mu)|P, S\rangle=\frac{1}{2} \equiv J_{q}(\mu)+J_{g}(\mu)
$$

- Infinite possibilities of decompositions - connection to observables?
- Intrinsic properties + dynamical motion and interactions
\square An incomplete story:

Polarized deep inelastic scattering

\square DIS with polarized beam(s):

$$
\begin{aligned}
& \text { "Resolution" } \quad Q \equiv \sqrt{-q^{2}} \\
& \qquad \frac{\hbar}{Q}=\frac{2 \times 10^{-16} \mathrm{~m}}{Q / \mathrm{GeV}} \lesssim 10^{-16} \mathrm{~m}=1 / 10 \mathrm{fm} \\
& \text { "Inelasticity" }- \text { known as Bjorken variable } \\
& \qquad x_{B}=\frac{Q^{2}}{2 P \cdot q}=\frac{Q^{2}}{Q^{2}+M_{X}^{2}-m^{2}}
\end{aligned}
$$

\diamond Recall - from lecture 2:

$$
\begin{aligned}
W_{\mu \nu} & =-\left(g_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}\right) F_{1}\left(x_{B}, Q^{2}\right)+\frac{1}{p \cdot q}\left(p_{\mu}-q_{\mu} \frac{p \cdot q}{q^{2}}\right)\left(p_{v}-q_{\nu} \frac{p \cdot q}{q^{2}}\right) F_{2}\left(x_{B}, Q^{2}\right) \\
& +i M_{p} \varepsilon^{\mu \nu \rho \sigma} q_{\rho}\left[\frac{S_{\sigma}}{p \cdot q} g_{1}\left(x_{B}, Q^{2}\right)+\frac{(p \cdot q) S_{\sigma}-(S . q) p_{\sigma}}{(p . q)^{2}} g_{2}\left(x_{B}, Q^{2}\right)\right]
\end{aligned}
$$

\diamond Polarized structure functions:

$$
g_{1}\left(x_{B}, Q^{2}\right), g_{2}\left(x_{B}, Q^{2}\right)
$$

Polarized deep inelastic scattering

\square Extract the polarized structure functions:

$$
\mathcal{W}^{\mu \nu}(P, q, S)-\mathcal{W}^{\mu \nu}(P, q,-S)
$$

\diamond Define: $\angle(\hat{k}, \hat{S})=\alpha$, and lepton helicity λ

> Difference in cross sections with hadron spin flipped

$$
\begin{aligned}
& \frac{d \sigma^{(\alpha)}}{d x d y d \phi}-\frac{d \sigma^{(\alpha+\pi)}}{d x d y d \phi}=\frac{\lambda e^{4}}{4 \pi^{2} Q^{2}} \times \\
& \times\left\{\cos \alpha\left\{\left[1-\frac{y}{2}-\frac{m^{2} x^{2} y^{2}}{Q^{2}}\right] g_{1}\left(x, Q^{2}\right)-\frac{2 m^{2} x^{2} y}{Q^{2}} g_{2}\left(x, Q^{2}\right)\right\}\right. \\
& \left.-\sin \alpha \cos \phi \frac{2 m x}{Q} \sqrt{\left(1-y-\frac{m^{2} x^{2} y^{2}}{Q^{2}}\right)}\left(\frac{y}{2} g_{1}\left(x, Q^{2}\right)+g_{2}\left(x, Q^{2}\right)\right)\right\}
\end{aligned}
$$

\diamond Spin orientation:

$$
\alpha=0: \Rightarrow g_{1}
$$

Polarized deep inelastic scattering

\square Spin asymmetries - measured experimentally:
\diamond Longitudinal polarization $-\quad \alpha=0$

Known function

$$
A_{\|}=\frac{d \sigma^{(\rightarrow \Leftarrow)}-d \sigma^{(\rightarrow \Rightarrow)}}{d \sigma^{(\rightarrow \Leftarrow)}+d \sigma^{(\rightarrow \Rightarrow)}}=D(y) \frac{g_{1}\left(x, Q^{2}\right)}{F_{1}\left(x, Q^{2}\right)} \equiv D(y) A_{1}\left(x, Q^{2}\right)
$$

Polarized deep inelastic scattering

\square Parton model results - LO QCD:

\diamond Structure functions:

$$
\begin{aligned}
& F_{1}(x)=\frac{1}{2} \sum_{q} e_{q}^{2}[q(x)+\bar{q}(x)] \\
& g_{1}(x)=\frac{1}{2} \sum e_{q}^{2}[\Delta q(x)+\Delta \bar{q}(x)] \\
& g_{1}=\frac{1}{2}\left[\frac{4}{9}(\Delta u+\Delta \bar{u})+\frac{1}{9}(\Delta d+\Delta \bar{d}+\Delta s+\Delta \bar{s})\right]
\end{aligned}
$$

\diamond Polarized quark distribution:

$$
\Delta f(\xi) \equiv f^{+}(\xi)-f^{-}(\xi) \quad \begin{gathered}
\text { Information on nucleon's } \\
\text { spin structure Jefferson Lab }
\end{gathered}
$$

Polarized deep inelastic scattering

\square Systematics polarized PDFs - LO QCD:

Two-quark correlator:

$$
\begin{aligned}
\Phi_{i j}(k, P, S) & =\sum_{X} \int \frac{\mathrm{~d}^{3} \mathbf{P}_{X}}{(2 \pi)^{3} 2 E_{X}}(2 \pi)^{4} \delta^{4}\left(P-k-P_{X}\right)\langle P S| \bar{\psi}_{j}(0)|X\rangle\langle X| \psi_{i}(0)|P S\rangle \\
& =\int \mathrm{d}^{4} z \mathrm{e}^{i k \cdot z}\langle P S| \bar{\psi}_{j}(0) \psi_{i}(z)|P S\rangle
\end{aligned}
$$

\diamond Hadronic tensor (one -flavor):

$$
\mathcal{W}^{\mu \nu}=e^{2} \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}} \delta\left((k+q)^{2}\right) \operatorname{Tr}\left[\Phi \gamma^{\mu}(k+q) \gamma^{\nu}\right]
$$

Polarized deep inelastic scattering

\diamond General expansion of :
must have general expansion in terms of $P, \not h, \not \phi$ etc.

$$
\phi(x)=\frac{1}{2}\left[q(x) \gamma \cdot P+s_{\|} \Delta q(x) \gamma_{5} \gamma \cdot P+\delta q(x) \gamma \cdot P \gamma_{5} \gamma \cdot S_{\perp}\right]
$$

\diamond 3-leading power quark parton distribution:

$$
\begin{aligned}
q(x) & =\frac{1}{4 \pi} \int d z^{-} \mathrm{e}^{i z^{-} x P^{+}}\langle P, S| \bar{\psi}(0) \gamma^{+} \psi\left(0, z^{-}, \mathbf{0}_{\perp}\right)|P, S\rangle \\
\Delta q(x) & =\frac{1}{4 \pi} \int d z^{-} \mathrm{e}^{i z^{-} x P^{+}}\langle P, S| \bar{\psi}(0) \gamma^{+} \gamma_{5} \psi\left(0, z^{-}, \mathbf{0}_{\perp}\right)|P, S\rangle \\
\delta q(x) & =\frac{1}{4 \pi} \int d z^{-} \mathrm{e}^{i z^{-} x P^{+}}\langle P, S| \bar{\psi}(0) \gamma^{+} \gamma_{\perp} \gamma_{5} \psi\left(0, z^{-}, \mathbf{0}_{\perp}\right)|P, S\rangle
\end{aligned}
$$

"unpolarized" - "longitudinally polarized" - "transversity"

Polarized deep inelastic scattering

\square Physical interpretation:

$$
\begin{aligned}
q(x)= & \frac{1}{2} \sum_{X} \delta\left(P_{X}^{+}-(1-x) P^{+}\right) \\
& \left.\left.\times\left.\left[\left|\langle X| \mathcal{P}^{+} \psi_{+}(0)\right| P, \lambda=\frac{1}{2}\right\rangle\right|^{2}+\left|\langle X| \mathcal{P}^{-} \psi_{+}(0)\right| P, \lambda=\frac{1}{2}\right\rangle\left.\right|^{2}\right] \\
\Delta q(x)= & \frac{1}{2} \sum_{X} \delta\left(P_{X}^{+}-(1-x) P^{+}\right) \\
& \left.\left.\times\left.\left[\left|\langle X| \mathcal{P}^{+} \psi_{+}(0)\right| P, \lambda=\frac{1}{2}\right\rangle\right|^{2}-\left|\langle X| \mathcal{P}^{-} \psi_{+}(0)\right| P, \lambda=\frac{1}{2}\right\rangle\left.\right|^{2}\right] \\
\delta q(x)= & \frac{1}{2} \sum_{X} \delta\left(P_{X}^{+}-(1-x) P^{+}\right) \\
& \left.\left.\times\left.\left[\left|\langle X| \mathcal{P}^{\uparrow} \psi_{+}(0)\right| P, S_{\perp}=\frac{1}{2}\right\rangle\right|^{2}-\left|\langle X| \mathcal{P}^{\downarrow} \psi_{+}(0)\right| P, S_{\perp}=\frac{1}{2}\right\rangle\left.\right|^{2}\right]
\end{aligned}
$$

Spin projection:

$$
\mathcal{P}^{ \pm} \equiv \frac{1 \pm \gamma_{5}}{2} \quad \text { and } \quad \mathcal{P}^{\uparrow \downarrow} \equiv \frac{1 \pm \gamma_{\perp} \gamma_{5}}{2} \text { Jefferson Lab }
$$

Basics for spin observables

\square Factorized cross section:

$$
\begin{gathered}
\sigma_{h(p)}(Q, s) \propto\langle p, \vec{s}| \mathcal{O}\left(\psi, A^{\mu}\right)|p, \vec{s}\rangle \\
\text { e.g. } \mathcal{O}\left(\psi, A^{\mu}\right)=\bar{\psi}(0) \hat{\Gamma} \psi\left(y^{-}\right) \quad \text { with } \hat{\Gamma}=I, \gamma_{5}, \gamma^{\mu}, \gamma_{5} \gamma^{\mu}, \sigma^{\mu \nu}
\end{gathered}
$$

\square Parity and Time-reversal invariance:

$$
\langle p, \vec{s}| \mathcal{O}\left(\psi, A^{\mu}\right)|p, \vec{s}\rangle=\langle p,-\vec{s}| \mathcal{P} \mathcal{T} \mathcal{O}^{\dagger}\left(\psi, A^{\mu}\right) \mathcal{T}^{-1} \mathcal{P}^{-1}|p,-\vec{s}\rangle
$$

\square IF: $\langle p,-\vec{s}| \mathcal{P} \mathcal{T} \mathcal{O}^{\dagger}\left(\psi, A^{\mu}\right) \mathcal{T}^{-1} \mathcal{P}^{-1}|p,-\vec{s}\rangle= \pm\langle p,-\vec{s}| \mathcal{O}\left(\psi, A^{\mu}\right)|p,-\vec{s}\rangle$

$$
\text { or }\langle p, \vec{s}| \mathcal{O}\left(\psi, A^{\mu}\right)|p, \vec{s}\rangle= \pm\langle p,-\vec{s}| \mathcal{O}\left(\psi, A^{\mu}\right)|p,-\vec{s}\rangle
$$

Operators lead to the " + " sign spin-averaged cross sections

Operators lead to the "-" sign
spin asymmetries
\square Example:

$$
\begin{aligned}
& \mathcal{O}\left(\psi, A^{\mu}\right)=\bar{\psi}(0) \gamma^{+} \psi\left(y^{-}\right) \Rightarrow q(x) \\
& \mathcal{O}\left(\psi, A^{\mu}\right)=\bar{\psi}(0) \gamma^{+} \gamma_{5} \psi\left(y^{-}\right) \Rightarrow \Delta q(x) \\
& \mathcal{O}\left(\psi, A^{\mu}\right)=\bar{\psi}(0) \gamma^{+} \gamma^{\perp} \gamma_{5} \psi\left(y^{-}\right) \Rightarrow \delta q(x) \rightarrow h(x) \\
& \mathcal{O}\left(\psi, A^{\mu}\right)=\frac{1}{x p^{+}} F^{+\alpha}(0)\left[-i \varepsilon_{\alpha \beta}\right] F^{+\beta}\left(y^{-}\right) \Rightarrow \Delta g(x) \text { Jefferson Lab }
\end{aligned}
$$

Proton "spin crisis" - excited the field

\square EMC (European Muon Collaboration '87) - "the Plot":

$$
\begin{aligned}
g_{1}(x)= & \frac{1}{2} \sum_{q} e_{q}^{2}[\Delta q(x)+\Delta \bar{q}(x)] \\
& +\mathcal{O}\left(\alpha_{s}\right)+\mathcal{O}(1 / Q)
\end{aligned}
$$

\diamond Combined with earlier SLAC data:

$$
\int_{0}^{1} g_{1}^{p}(x) d x=0.126 \pm 0.018
$$

\triangleleft Combined with:

$$
g_{A}^{3}=\Delta u-\Delta d \quad \text { and } \quad g_{A}^{8}=\Delta u+\Delta d-2 \Delta s
$$ from low energy neutron \& hyperon β decay

$$
\Rightarrow \quad \Delta \Sigma=\sum_{q}[\Delta q+\Delta \bar{q}]=0.12 \pm 0.17
$$

\square "Spin crisis" or puzzle:
\diamond Strange sea polarization is sizable \& negative
\diamond Very little of the proton spin is carried by quarks

New era of spin physics Jefferson Lab

Probes and facilities

\square High energy scattering - to see quarks and gluons:

\square Spin Probes:

DIS

SIDIS HEMES, COMPASS, JLab, Future EIC, ...

Hadron-hadron RHIC, FermiLab, JPAC, ...

Determination of Δq and $\Delta \bar{q}$

W's are left-handed:

\square Flavor separation:

Lowest order:

$$
\begin{gathered}
A_{L}^{W^{+}}=-\frac{\Delta u\left(x_{1}\right) \bar{d}\left(x_{2}\right)-\Delta \bar{d}\left(x_{1}\right) u\left(x_{2}\right)}{u\left(x_{1}\right) \bar{d}\left(x_{2}\right)+\bar{d}\left(x_{1}\right) u\left(x_{2}\right)} \\
x_{1}=\frac{M_{W}}{\sqrt{s}} e^{y_{W}}, \quad x_{2}=\frac{M_{W}}{\sqrt{s}} e^{-y_{W}} \\
A_{L}^{W^{+}} \approx-\frac{\Delta u\left(x_{1}\right)}{u\left(x_{1}\right)}<0 \\
A_{L}^{W^{+}} \approx-\frac{\Delta \bar{d}\left(x_{2}\right)}{\bar{d}\left(x_{2}\right)}<0
\end{gathered}
$$

Forward \mathbf{W}^{+}(backward e^{+}):

Backward \mathbf{W}^{+}(forward e^{+}):
\square Complications:
High order, W's p_{T} distribution at low p_{T}

What the EIC can do - EIC Yellow Report?

Transverse spin phenomena in QCD

$\square 40$ years ago, Profs. Christ and Lee proposed to use A_{N} of inclusive DIS to test the Time-Reversal invariance
N. Christ and T.D. Lee, Phys. Rev. 143, 1310 (1966)

Single Transverse-Spin Asymmetry (SSA)

$$
A(\ell, \vec{s}) \equiv \frac{\Delta \sigma(\ell, \vec{s})}{\sigma(\ell)}=\frac{\sigma(\ell, \vec{s})-\sigma(\ell,-\vec{s})}{\sigma(\ell, \vec{s})+\sigma(\ell,-\vec{s})}
$$

They predicted:

In the approximation of one-photon exchange, A_{N} of inclusive DIS vanishes if Time-Reversal is invariant for EM and Strong interactions

A_{N} for inclusive DIS

\square DIS cross section:

$$
\sigma\left(\vec{s}_{\perp}\right) \propto L^{\mu \nu} W_{\mu \nu}\left(\vec{s}_{\perp}\right)
$$

\square Leptionic tensor is symmetric: $L^{\mu \nu}=L^{\nu \mu}$
Hadronic tensor: $\quad W_{\mu \nu}\left(\vec{s}_{\perp}\right) \propto\left\langle P, \vec{s}_{\perp}\right| j_{\mu}^{\dagger}(0) j_{\nu}(y)\left|P, \vec{s}_{\perp}\right\rangle$
\square Polarized cross section:

$$
\Delta \sigma\left(\vec{s}_{\perp}\right) \propto L^{\mu \nu}\left[W_{\mu \nu}\left(\vec{s}_{\perp}\right)-W_{\mu \nu}\left(-\vec{s}_{\perp}\right)\right]
$$

Vanishing single spin asymmetry:

$$
\begin{aligned}
& A_{N}=0 \Leftrightarrow\left\langle P, \vec{s}_{\perp}\right| j_{\mu}^{\dagger}(0) j_{\nu}(y)\left|P, \vec{s}_{\perp}\right\rangle \\
& \nsupseteq\left\langle P,-\vec{s}_{\perp}\right| j_{\nu}^{\dagger}(0) j_{\mu}(y)\left|P,-\vec{s}_{\perp}\right\rangle
\end{aligned}
$$

A_{N} for inclusive DIS

\square Define two quantum states:

$$
\langle\beta| \equiv\left\langle P, \vec{s}_{\perp}\right| j_{\mu}^{\dagger}(0) j_{\nu}(y) \quad|\alpha\rangle \equiv\left|P, \vec{s}_{\perp}\right\rangle
$$

- Time-reversed states:

$$
\begin{aligned}
\left|\alpha_{T}\right\rangle & =V_{T}\left|P, \vec{s}_{\perp}\right\rangle=\left|-P,-\vec{s}_{\perp}\right\rangle \\
\left|\beta_{T}\right\rangle & =V_{T}\left[j_{\mu}^{\dagger}(0) j_{\nu}(y)\right]^{\dagger}\left|P, \vec{s}_{\perp}\right\rangle \\
& =\left(V_{T} j_{\nu}^{\dagger}(y) V_{T}^{-1}\right)\left(V_{T} j_{\mu}(0) V_{T}^{-1}\right)\left|-P,-\vec{s}_{\perp}\right\rangle
\end{aligned}
$$

- Time-reversal invariance:

$$
\left\langle\alpha_{T} \mid \beta_{T}\right\rangle=\langle\alpha| V_{T}^{\dagger} V_{T}|\beta\rangle=\langle\alpha \mid \beta\rangle^{*}=\langle\beta \mid \alpha\rangle
$$

$$
\begin{aligned}
& \left\langle-P,-\vec{s}_{\perp}\right|\left(V_{T} j_{\nu}^{\dagger}(y) V_{T}^{-1}\right)\left(V_{T} j_{\mu}(0) V_{T}^{-1}\right)\left|-P,-\vec{s}_{\perp}\right\rangle \\
& =\left\langle P, \vec{s}_{\perp}\right| j_{\mu}^{\dagger}(0) j_{\nu}(y)\left|P, \vec{s}_{\perp}\right\rangle
\end{aligned}
$$

A_{N} for inclusive DIS

$$
\left.\begin{array}{l}
\square \text { Parity invariance: } 1=U_{P}^{-1} U_{P}=U_{P}^{\dagger} U_{P} \\
\left\langle-P,-\left.\vec{s}_{\perp}\right|^{2}\left(V_{T} j_{\nu}^{\dagger}(y) V_{T}^{-1}\right)^{\dagger}\left(V_{T} j_{\mu}(0) V_{T}^{-1}\right) \mid-P,-\vec{s}_{\perp}\right\rangle \\
\left\langle P,-\vec{s}_{\perp}\right|\left(U_{P} V_{T} j_{\nu}^{\dagger}(y) V_{T}^{-1} U_{P}^{-1}\right)\left(U_{P} V_{T} j_{\mu}(0) V_{T}^{-1} U_{P}^{-1}\right)\left|P,-\vec{s}_{\perp}\right\rangle \\
\left\langle P,-\vec{s}_{\perp}\right| j_{\nu}^{\dagger}(-y) j_{\mu}(0)\left|P,-\vec{s}_{\perp}\right\rangle
\end{array} \begin{array}{l}
\left\langle P,-\vec{s}_{\perp}\right| j_{\nu}^{\dagger}(0) j_{\mu}(y)\left|P,-\vec{s}_{\perp}\right\rangle \\
=\left\langle P, \vec{s}_{\perp}\right| j_{\mu}^{\dagger}(0) j_{\nu}(y)\left|P, \vec{s}_{\perp}\right\rangle
\end{array}\right] .
$$

\square Polarized cross section:

$$
\begin{aligned}
\Delta \sigma\left(\vec{s}_{\perp}\right) & \propto L^{\mu \nu}\left[W_{\mu \nu}\left(\vec{s}_{\perp}\right)-W_{\mu \nu}\left(-\vec{s}_{\perp}\right)\right] \\
& =L^{\mu \nu}\left[W_{\mu \nu}\left(\vec{s}_{\perp}\right)-W_{\nu \mu}\left(\vec{s}_{\perp}\right)\right]=0 \text { Jefferson Lab }
\end{aligned}
$$

A_{N} in hadronic collisions

$\square A_{N}$ - consistently observed for over 35 years!

BNL - 62.4 GeV

\square Survived the highest RHIC energy:

$$
A_{N} \equiv \frac{\Delta \sigma(\ell, \vec{s})}{\sigma(\ell)}=\frac{\sigma(\ell, \vec{s})-\sigma(\ell,-\vec{s})}{\sigma(\ell, \vec{s})+\sigma(\ell,-\vec{s})}
$$

Do we understand this? Jefferson Lab

A_{N} in hadronic collisions

\square Early attempt:

Cross section:

Too small to explain available data!
What do we need?

$$
A_{N} \propto i \vec{s}_{p} \cdot\left(\vec{p}_{h} \times \vec{p}_{T}\right) \Rightarrow i \epsilon^{\mu \nu \alpha \beta} p_{h \mu} s_{\nu} p_{\alpha} p_{h \beta}^{\prime}
$$

Need a phase, a spin flip, enough vectors
\square Vanish without parton's transverse motion:
A direct probe for parton's transverse motion, Spin-orbital correlation, QCD quantum interference

Current understanding of TSSAs

\square Symmetry plays important role:

$\longrightarrow A_{N}=0$
\square One scale observables - $\mathrm{Q} \gg \Lambda_{\mathrm{QcD}}$:

SIDIS: $Q^{\sim} P_{T}$

DY: Q ~ $P_{T} ;$ Jet, Particle: P_{T}
\square Two scales observables $-Q_{1} \gg Q_{2} \sim \Lambda_{\mathrm{QCD}}$:

SIDIS: $Q \gg P_{T}$

Collinear factorization
Twist-3 distributions

DY: $Q \gg P_{T}$ or $Q \ll P_{T}$

TMD factorization
TMD distributions

Jefferson Lab

How collinear factorization generates TSSA?

\square Collinear factorization beyond leading power:

\square Single transverse spin asymmetry:

Efremov, Teryaev, 82;
Qiu, Sterman, 91, etc.

$$
\Delta \sigma\left(s_{T}\right) \propto T^{(3)}(x, x) \otimes \hat{\sigma}_{T} \otimes D(z)+\delta q(x) \otimes \hat{\sigma}_{D} \otimes D^{(3)}(z, z)+\ldots
$$

Qiu, Sterman, 1991, ...

Kang, Yuan, Zhou, 2010

Integrated information on parton's transverse motion!

Twist-3 distributions relevant to A_{N}

\square Twist-2 distributions:

- Unpolarized PDFs:

$$
\begin{aligned}
& q(x) \propto\langle P| \bar{\psi}_{q}(0) \frac{\gamma^{+}}{2} \psi_{q}(y)|P\rangle \\
& G(x) \propto\langle P| F^{+\mu}(0) F^{+\nu}(y)|P\rangle\left(-g_{\mu \nu}\right) \\
& \Delta q(x) \propto\left\langle P, S_{\|}\right| \bar{\psi}_{q}(0) \frac{\gamma^{+} \gamma^{5}}{2} \psi_{q}(y)\left|P, S_{\|}\right\rangle \\
& \Delta G(x) \propto\left\langle P, S_{\|}\right| F^{+\mu}(0) F^{+\nu}(y)\left|P, S_{\|}\right\rangle\left(i \epsilon_{\perp \mu \nu}\right)
\end{aligned}
$$

\square Two-sets Twist-3 correlation functions:
No probability interpretation!

$\widetilde{\mathcal{T}}_{q, F}=\int \frac{d y_{1}^{-} d y_{2}^{-}}{(2 \pi)^{2}} e^{i x P^{+} y_{1}^{-}} e^{i x_{2} P^{+} y_{2}^{-}}\left\langle P, s_{T}\right| \bar{\psi}_{q}(0) \frac{\gamma^{+}}{2}\left[\epsilon^{s_{T} \sigma n \bar{n}} F_{\sigma}{ }^{+}\left(y_{2}^{-}\right)\right] \psi_{q}\left(y_{1}^{-}\right)\left|P, s_{T}\right\rangle$
Kang, Qiu, 2009
$\widetilde{\mathcal{T}}_{G, F}^{(f, d)}=\int \frac{d y_{1}^{-} d y_{2}^{-}}{(2 \pi)^{2}} e^{i x P^{+} y_{1}^{-}} e^{i x_{2} P^{+} y_{2}^{-}} \frac{1}{P^{+}}\left\langle P, s_{T}\right| F^{+\rho}(0)\left[\epsilon^{s_{T} \sigma n \bar{n}} F_{\sigma}{ }^{+}\left(y_{2}^{-}\right)\right] F^{+\lambda}\left(y_{1}^{-}\right)\left|P, s_{T}\right\rangle\left(-g_{\rho \lambda}\right)$
$\widetilde{\mathcal{T}}_{\Delta q, F}=\int \frac{d y_{1}^{-} d y_{2}^{-}}{(2 \pi)^{2}} e^{i x P^{+} y_{1}^{-}} e^{i x_{2} P^{+} y_{2}^{-}}\left\langle P, s_{T}\right| \bar{\psi}_{q}(0) \frac{\gamma^{+} \gamma^{5}}{2}\left[i s_{T}^{\sigma} F_{\sigma}^{+}\left(y_{2}^{-}\right)\right] \psi_{q}\left(y_{1}^{-}\right)\left|P, s_{T}\right\rangle$
$\widetilde{\mathcal{T}}_{\Delta G, F}^{(f, d)}=\int \frac{d y_{1}^{-} d y_{2}^{-}}{(2 \pi)^{2}} e^{i x P^{+} y_{1}^{-}} e^{i x_{2} P^{+} y_{2}^{-}} \frac{1}{P^{+}}\left\langle P, s_{T}\right| F^{+\rho}(0)\left[i s_{T}^{\sigma} F_{\sigma}^{+}\left(y_{2}^{-}\right)\right] F^{+\lambda}\left(y_{1}^{-}\right)\left|P, s_{T}\right\rangle\left(i \epsilon_{\perp \rho \lambda}\right)$
Role of color magnetic force!
\square Twist-3 fragmentation functions:

"Interpretation" of twist-3 correlation functions

Measurement of direct QCD quantum interference:

Interference between a single active parton state and an active two-parton composite state
\square "Expectation value" of QCD operators:

$$
\begin{aligned}
& \langle P, s| \bar{\psi}(0) \gamma^{+} \psi\left(y^{-}\right)|P, s\rangle \longrightarrow\langle P, s| \bar{\psi}(0) \gamma^{+}\left[\epsilon_{\perp}^{\alpha \beta} s_{T \alpha} \int d y_{2}^{-} F_{\beta}^{+}\left(y_{2}^{-}\right)\right] \psi\left(y^{-}\right)|P, s\rangle \\
& \langle P, s| \bar{\psi}(0) \gamma^{+} \gamma_{5} \psi\left(y^{-}\right)|P, s\rangle \longrightarrow\langle P, s| \bar{\psi}(0) \gamma^{+}\left[i g_{\perp}^{\alpha \beta} s_{T \alpha} \int d y_{2}^{-} F_{\beta}^{+}\left(y_{2}^{-}\right)\right] \psi\left(y^{-}\right)|P, s\rangle
\end{aligned}
$$

How to interpret the "expectation value" of the operators in RED?

A simple example

The operator in Red - a classical Abelian case:

rest frame of ($\mathbf{p}, \mathrm{s}_{\mathbf{T}}$)

\square Change of transverse momentum:

$$
\frac{d}{d t} p_{2}^{\prime}=e\left(\vec{v}^{\prime} \times \vec{B}\right)_{2}=-e v_{3} B_{1}=e v_{3} F_{23}
$$

\square In the c.m. frame:

$$
\begin{aligned}
& (m, \overrightarrow{0}) \rightarrow \bar{n}=\left(1,0, o_{T}\right), \quad(1,-\hat{z}) \rightarrow n=\left(0,1,0_{T}\right) \\
& \Longrightarrow \frac{d}{d t} p_{2}^{\prime}=e \epsilon^{s_{T} \sigma n \bar{n}} F_{\sigma}^{+}
\end{aligned}
$$

\square The total change:

$$
\Delta p_{2}^{\prime}=e \int d y^{-} \epsilon^{s_{T} \sigma n \bar{n}} F_{\sigma}^{+}\left(y^{-}\right)
$$

Net quark transverse momentum imbalance caused by color Lorentz force inside a transversely polarized proton

Test QCD at twist-3 level

\square Scaling violation - "DGLAP" evolution:

\square Evolution equation - consequence of factorization:
Factorization:

$$
\Delta \sigma\left(Q, s_{T}\right)=(1 / Q) H_{1}\left(Q / \mu_{F}, \alpha_{s}\right) \otimes f_{2}\left(\mu_{F}\right) \otimes f_{3}\left(\mu_{F}\right)
$$

DGLAP for f_{2} :

$$
\frac{\partial}{\partial \ln \left(\mu_{F}\right)} f_{2}\left(\mu_{F}\right)=P_{2} \otimes f_{2}\left(\mu_{F}\right)
$$

Evolution for $\mathbf{f}_{3}: \quad \frac{\partial}{\partial \ln \left(\mu_{F}\right)} f_{3}=\left(\frac{\partial}{\partial \ln \left(\mu_{F}\right)} H_{1}^{(1)}-P_{2}^{(1)}\right) \otimes f_{3}$

Evolution kernels - an example

\square Quark to quark:

\square Feynman diagram calculation:

$$
\begin{aligned}
& -\int^{\mu_{F}^{2}} \frac{d k_{T}^{2}}{k_{T}^{2}}\left[\frac{C_{A}}{2}\right] \frac{\alpha_{s}}{2 \pi} \mathcal{T}_{q, F}(x, x)
\end{aligned}
$$

$$
\begin{aligned}
& -\int^{\mu_{F}^{2}} \frac{d k_{T}^{2}}{k_{T}^{2}}\left[\frac{C_{A}}{2}\right] \frac{\alpha_{s}}{2 \pi} \mathcal{T}_{q, F}(x, x)
\end{aligned}
$$

How TMD factorization generates TSSA?

\square SIDIS - "one-photon approximation":

- 18 Structure functions
- TTSA = at least one of 6 F $_{\text {UT }}$ structure functions is finite!

$$
\frac{d \sigma}{d x d y d \psi d z d \phi_{h} d P_{h \perp}^{2}}=\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}\right.
$$

Trento
Convention

$$
+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}
$$

$$
+S_{\|}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right]
$$

$$
+S_{\|} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}\right]
$$

$$
+\left|\boldsymbol{S}_{\perp}\right| \sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)
$$

$$
+\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}
$$

$$
\left.+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} F_{U T}^{\sin \phi_{S}}+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right]
$$

$$
+\left|\boldsymbol{S}_{\perp}\right| \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}\right.
$$

$$
\varepsilon=\frac{1-y-\frac{1}{4} \gamma^{2} y^{2}}{1-y+\frac{1}{2} y^{2}+\frac{1}{4} \gamma^{2} y^{2}}
$$

$$
\left.\left.+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\}
$$

How TMD factorization generates TSSA?

\square TMD factorization for SIDIS:
In the photon-hadron frame, all 18 structure functions can be factorized in terms of convolution of TMDs

- Unpolarized

$$
F_{U U, T}=x \sum_{a} e_{a}^{2} \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} \delta^{(2)}\left(\boldsymbol{p}_{T}-\boldsymbol{k}_{T}-\boldsymbol{P}_{h \perp} / z\right) f^{a}\left(x, p_{T}^{2}\right) D^{a}\left(z, k_{T}^{2}\right)
$$

- Transverse Single-Spin Asymmetry - Sivers:

$$
F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}=\mathcal{C}\left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T}}{M} f_{1 T}^{\perp} D_{1}\right] \quad \hat{\boldsymbol{h}}=\frac{\boldsymbol{P}_{h \perp}}{\left|\boldsymbol{P}_{h \perp}\right|}
$$

- Transverse Single-Spin Asymmetry - Collins:

$$
F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}=\mathcal{C}\left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T}}{M_{h}} h_{1} H_{1}^{\perp}\right]
$$

With:

$$
\mathcal{C}[w f D]=x \sum_{a} e_{a}^{2} \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} \delta^{(2)}\left(\boldsymbol{p}_{T}-\boldsymbol{k}_{T}-\boldsymbol{P}_{h \perp} / z\right) w\left(\boldsymbol{p}_{T}, \boldsymbol{k}_{T}\right) f^{a}\left(x, p_{T}^{2}\right) D^{a}\left(z, k_{T}^{2}\right)
$$

Orbital angular momentum

OAM: Correlation between parton's position and its motion

- in an averaged (or probability) sense
\square Jaffe-Manohar's quark OAM density:

$$
\mathcal{L}_{q}^{3}=\psi_{q}^{\dagger}[\vec{x} \times(-i \vec{\partial})]^{3} \psi_{q}
$$

\square Ji's quark OAM density:

$$
L_{q}^{3}=\psi_{q}^{\dagger}[\vec{x} \times(-i \vec{D})]^{3} \psi_{q}
$$

\square Difference between them:
\diamond generated by a "torque" of color Lorentz force

$$
\begin{aligned}
\mathcal{L}_{q}^{3}-L_{q}^{3} \propto \int \frac{d y^{-} d^{2} y_{T}}{(2 \pi)^{3}} & \left\langle P^{\prime}\right| \bar{\psi}_{q}(0) \frac{\gamma^{+}}{2} \int_{y^{-}}^{\infty} d z^{-} \Phi\left(0, z^{-}\right) \\
& \times \underbrace{\sum_{i, j=1,2}\left[\epsilon^{3 i j} y_{T}^{i} F^{+j}\left(z^{-}\right)\right] \Phi\left(z^{-}, y\right) \psi(y)|P\rangle_{y^{+}=0}}_{\text {"Chromodynamic torque" }}
\end{aligned}
$$

Similar color Lorentz force generates the single transverse-spin asymmetry

Nucleon spin and OAM from lattice QCD

\square QCD Collaboration:
[Deka et al. arXiv:1312.4816]

(b)

Disconnected Interaction (DI)

Partonic motion seen by a hard probe - GTMD

Fully unintegrated distribution:

$$
W_{\lambda \lambda^{\prime}}^{[\Gamma]}(P, k, \Delta, N ; \eta)=\frac{1}{2} \int \frac{d^{4} z}{(2 \pi)^{4}} e^{i k \cdot z}\left\langle p^{\prime}, \lambda^{\prime}\right| \bar{\psi}\left(-\frac{1}{2} z\right) \Gamma \mathcal{W}\left(-\frac{1}{2} z, \left.\frac{1}{2} z \right\rvert\, n\right) \psi\left(\frac{1}{2} z\right)|p, \lambda\rangle
$$

- not factorizable in general
\square Generalized TMDs - hard probe:

$$
\mathcal{W}\left(x, k_{T}, \Delta\right)_{\Gamma}=\int d k^{2} W(P, k, \Delta)_{\Gamma}
$$

- could be factorized assuming on-shell parton for the hard probe
\square Wigner function:
Belitsky, Ji, Yuan

$$
W\left(x, k_{T}, b\right) \propto \int d^{3} \Delta e^{i \vec{b} \cdot \vec{\Delta}} \mathcal{W}\left(x, k_{T}, \Delta\right)_{\Gamma=\gamma^{+}}
$$

\square Connection to all other known distributions:

$$
\begin{aligned}
& W\left(x, k_{T}, b\right) \Rightarrow \quad \text { Tomographic image of nucleon } \\
& q\left(x, b_{\perp}\right)=\int d^{2} k_{T} d b^{-} W\left(x, k_{T}, b\right)_{\gamma^{+}}
\end{aligned}
$$

Burkardt, 2002

$$
\mathcal{W}\left(x, k_{T}, \Delta\right)_{\Gamma} \Rightarrow \operatorname{TMDs}(\Delta=0), \quad \text { GPDs }\left(\int d^{2} k_{T}\right), \quad \text { PDFs }\left(\Delta=0, \int \begin{array}{l}
\left.d^{2} k_{T}\right) \\
\text { Jefferson Lab }
\end{array}\right.
$$

Summary and outlook

\square QCD has been extremely successful in interpreting and predicting high energy experimental data!
\square But, we still do not know much about hadron structure - The emerging phenomena of QCD!

\square Nuclear Femtography - QCD at a Fermi scale requires two-scale probes. Major advance in both measurement and factorization of two-scale observables!
\square Lepton-Hadron facility, such as EIC, is ideal for two-scale observables
\square TMDs and GPDs, accessible by high energy scattering with polarized beams, encode important information on hadron's 3D structure distributions as well as motions of quarks and gluons

Backup slides

Basic fundamentals about spin

Some fundamentals about spin

Spin in non-relativistic quantum mechanics:
\diamond Spin as an intrinsic angular momentum of the particle

- three spin vector:

$$
\overrightarrow{\mathcal{S}}=\left(\mathcal{S}_{x}, \mathcal{S}_{y}, \mathcal{S}_{z}\right)
$$

- angular momentum algebra:

$$
\begin{array}{rlr}
{\left[\mathcal{S}_{i}, \mathcal{S}_{j}\right]=i \epsilon_{i j k} \mathcal{S}_{k}} & \epsilon_{123}=+1 \\
{\left[\overrightarrow{\mathcal{S}}^{2}, \mathcal{S}_{j}\right]=0} &
\end{array}
$$

$\diamond \overrightarrow{\mathcal{S}}^{2}, \mathcal{S}_{z}$ fave set of simultaneous eigenvectors:

$$
\begin{aligned}
\overrightarrow{\mathcal{S}}^{2}|S, m\rangle & =S(S+1) \hbar^{2}|S, m\rangle & & S=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \\
\mathcal{S}_{z}|S, m\rangle & =m \hbar|S, m\rangle & & -S \leq m \leq S
\end{aligned}
$$

\diamond Spin d.o.f. are decoupled from kinematic d.o.f.

$$
\Psi_{\mathrm{Schr}}(\vec{r}) \longrightarrow \Psi_{\mathrm{Schr}}(\vec{r}) \times \chi_{m}
$$

$$
\text { where } \chi_{m} 5 \text { a }(2 \mathrm{~S}+1) \text { - component "spinor" }
$$

Some fundamentals about spin

\square Spin -1/2:
\diamond Two component spinors:

$$
\chi=\binom{a}{b}
$$

\diamond Operators could be represented by Pauli-matrices:

$$
\mathcal{S}_{x}=\frac{1}{2}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \mathcal{S}_{y}=\frac{1}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \mathcal{S}_{z}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

\diamond Eigenstates to $\quad \overrightarrow{\mathcal{S}}^{2} \mathbf{d} \quad: \mathcal{S}_{z}$

$$
\chi_{z}^{\uparrow}=\binom{1}{0} \quad \chi_{z}^{\downarrow}=\binom{0}{1}
$$

\diamond Eigenvalues:

$$
\mathcal{S}_{z} \chi_{z}^{\uparrow}=+\frac{1}{2} \chi_{z}^{\uparrow} \quad \mathcal{S}_{z} \chi_{z}^{\downarrow}=-\frac{1}{2} \chi_{z}^{\downarrow}
$$

Particles in these states are "polarized in z-direction"

Some fundamentals about spin

\square General superposition:

$$
\left\langle\mathcal{S}_{z}\right\rangle=\chi^{\dagger} \mathcal{S}_{z} \chi=\left(+\frac{1}{2}\right)|a|^{2}+\left(-\frac{1}{2}\right)|b|^{2}=\frac{1}{2}\left[|a|^{2}-|b|^{2}\right]
$$

\triangleleft Example: $\quad a=b=1 / \sqrt{2}$

$$
\chi=\frac{1}{\sqrt{2}}\binom{1}{1} \quad \Rightarrow \quad\left\langle\mathcal{S}_{z}\right\rangle=0
$$

\checkmark Notice: $\quad\left\langle\mathcal{S}_{x}\right\rangle=\chi^{\dagger} \mathcal{S}_{x} \chi=+\frac{1}{2}$
\diamond Eigenstate to $\boldsymbol{s}_{x} \quad \chi_{x}^{\uparrow}=\frac{1}{\sqrt{2}}\left[\chi_{z}^{\uparrow}+\chi_{z}^{\downarrow}\right]$
\triangleleft Arbitrary direction \vec{n} with $\quad|\vec{n}|=1$

$$
\mathcal{S}_{n}=\vec{n} \cdot \overrightarrow{\mathcal{S}}=n_{x} \mathcal{S}_{x}+n_{y} \mathcal{S}_{y}+n_{z} \mathcal{S}_{z}=\frac{1}{2}\left(\begin{array}{cc}
n_{z} & n_{x}-i n_{y} \\
n_{x}+i n_{y} & -n_{z}
\end{array}\right)
$$

A state that is an eigenstate to this operator: "polarized in \vec{n}-direction"

$$
\vec{n}=\text { Polarization vector }
$$

Eigenvalues $=\quad \pm 1 / 2$ Jefferson Lab

Some fundamentals about spin

\square Spin in the relativistic theory:
Physics is invariant under Lorentz transformation:
boost, rotations, and translations in space and time
\diamond Poincare group - 10 generators:
$\mathcal{P}^{\mu}, \quad \mathcal{M}^{\mu \nu}$
\diamond Pure rotations: $\quad J_{i}=-\frac{1}{2} \epsilon_{i j k} \mathcal{M}^{j k}$ re boosts: $\quad \mathcal{K}_{i}=\mathcal{M}^{i 0}$
Total angular momentum:

$$
\left[J_{i}, J_{j}\right]=i \epsilon_{i j k} J_{k}
$$

\diamond Two group invariants (fundamental observables):

$$
\begin{aligned}
& \mathcal{P}_{\mu} \mathcal{P}^{\mu}=\mathcal{P}^{2}=m^{2} \\
& \mathcal{W}_{\mu} \mathcal{W}^{\mu} \quad \text { where } \quad \mathcal{W}_{\mu}=-\frac{1}{2} \epsilon_{\mu \nu \rho \sigma} \mathcal{M}^{\nu \rho} \mathcal{P}^{\sigma} \quad \text { Pauli-Lubanski }
\end{aligned}
$$

$$
\diamond \text { Fact: }\left[\mathcal{W}_{\mu}, \mathcal{W}_{\nu}\right]=i \epsilon_{\mu \nu \rho \sigma} \mathcal{W}^{\rho} \mathcal{P}^{\sigma}
$$

$$
\left[\mathcal{W}^{i}, \mathcal{W}^{j}\right]=i m \epsilon_{i j k} \mathcal{W}^{k}
$$

If acting on states at the rest

Some fundamentals about spin

\triangleleft Recall: constructed eigenstates to $\overrightarrow{\mathcal{S}}^{2}$ and $\vec{n} \cdot \overrightarrow{\mathcal{S}}$:

$$
\begin{aligned}
\mathcal{W}_{\mu} \mathcal{W}^{\mu}|p, S\rangle & =m^{2} S(S+1)|p, S\rangle & & S=\frac{1}{2} \\
-\frac{W \cdot n}{m}|p, S\rangle & = \pm \frac{1}{2}|p, S\rangle & & W^{\mu}=\left.\mathcal{W}^{\mu}\right|_{\text {at rest }}
\end{aligned}
$$

\diamond "Polarization operator":

$$
\mathcal{P} \equiv-\frac{W \cdot n}{m}
$$

\diamond "Covariant polarization vector": $\quad n^{\mu}$ with $n^{2}=-1, \quad n \cdot p=0$
\diamond For Dirac particles: $\quad \mathcal{P}=\frac{1}{2} \gamma_{5} \gamma_{\mu} n^{\mu}$
\square
Projection operators to project out the eigenstates of

$$
\frac{1}{2}\left(\text { Il } \pm \gamma_{5} \not x\right)
$$

\diamond Longitudinal polarization: $\quad \vec{n}=\vec{p} /|\vec{p}|, \quad n^{0}=0$
$\Longrightarrow \mathcal{P}=\frac{1}{2} \gamma_{5} \gamma_{\mu} n^{\mu}=\frac{\vec{J} \cdot \vec{p}}{|\vec{p}|} \quad$ with eigenvalues $\quad \pm \frac{1}{2}$

$$
\frac{\vec{J} \cdot \vec{p}}{|\vec{p}|} u_{ \pm}(p)= \pm \frac{1}{2} u_{ \pm}(p) \equiv \frac{\lambda}{2} u_{ \pm}(p) \quad \leadsto \lambda \text { "helicity" }
$$

Massless particle:

Some fundamentals about spin

\diamond Transverse polarization: $\quad n^{\mu}=\left(0, \vec{n}_{\perp}, 0\right) \quad$ (for \vec{p} in z direction)
$\Longleftrightarrow \mathcal{P}=\gamma_{0} \vec{J} \cdot \vec{n}=\gamma_{0} J_{\perp} \neq J_{\perp}$
\diamond Transversity, not "transverse spin", has the eigenvalue: $\pm \frac{1}{2}$

$$
\gamma_{0} J_{\perp} u_{\uparrow \downarrow}(p)= \pm \frac{1}{9} u_{\uparrow \downarrow}(p)
$$

with spinors: $\quad u_{\uparrow}^{(x)}=\frac{1}{\sqrt{2}}\left[u_{+}+u_{-}\right]$
Same as in non-relativistic theory
Transverse polarization, or transversity, not "transverse spin", is invariant under the "boosts along $\vec{p} "$
\diamond Projection operator with both longitudinal and transverse components:

$$
\begin{aligned}
& \frac{1}{2} \not p\left[\mathbb{1 1}-s_{\|} \gamma_{5}+\gamma_{5} \phi_{\perp}\right] \quad \text { at high energy } \\
& \text { with } \quad s_{\|} \sim \lambda_{1}, s_{\perp} \sim n_{\perp}
\end{aligned}
$$

Some fundamentals about spin

\square Back to Spin-1/2:
$\diamond A$ free spin-1/2 particle obeys Dirac equation

$$
(\not p-m) u(p)=0 \quad \text { where } \not p=\gamma_{\mu} p^{\mu}
$$

with 4-component solutions:

$$
\Psi(x)= \begin{cases}\mathrm{e}^{-i p \cdot x} u(p) & \text { positive energy } \rightarrow \text { particle } \\ \mathrm{e}^{+i p \cdot x} v(p) & \text { negative energy } \rightarrow \text { antiparticle }\end{cases}
$$

Each with "two" solutions: "spin up/down"
\diamond If it is at rest,

$$
u^{+}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
0
\end{array}\right) \quad u^{-}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

They are eigenstates to the spin operator $: \mathcal{S}_{z}$

$$
\mathcal{S}_{z} u^{ \pm}= \pm \frac{1}{2} u^{ \pm} \quad \text { "polarized in z-direction" }
$$

Some fundamentals about spin

\triangleleft Boost the particle to momentum $\quad p=\left(E, 0,0, p_{z}\right)$

$$
u^{+}=N\left(\begin{array}{c}
1 \\
0 \\
\frac{p_{z}}{E+m} \\
0
\end{array}\right) \quad u^{-}=N\left(\begin{array}{c}
0 \\
1 \\
0 \\
\frac{-p_{z}}{E+m}
\end{array}\right)
$$

\diamond Eigenstates of the helicity operator:

$$
\frac{\overrightarrow{\mathcal{S}} \cdot \vec{p}}{|\vec{p}|} u^{ \pm}= \pm \frac{1}{2} u^{ \pm}
$$

\diamond Also eigenstates of the Pauli-Lubanski (polarization) operator:

$$
\frac{1}{2} \gamma_{5} \not h u^{ \pm}= \pm \frac{1}{2} u^{ \pm}
$$

where the polarization vector

$$
n=\left(p_{z}, 0,0, E\right) / m
$$

\diamond At high energy, $E \approx p_{z}$ also become eigenstates to chirality γ_{5} :

$$
\gamma_{5} u^{ \pm}= \pm \frac{1}{2} u^{ \pm}
$$

Some fundamentals about spin

\square Back to rest frame:
\diamond Construct eigenstates to the spin operator \mathcal{S}_{x} :

$$
\mathcal{S}_{x} u^{\uparrow}=+\frac{1}{2} u^{\uparrow} \quad \mathcal{S}_{x} u^{\downarrow}=-\frac{1}{2} u^{\downarrow}
$$

with $u^{\uparrow}=\frac{1}{\sqrt{2}}\left[u^{+}+u^{-}\right] \quad u^{\downarrow}=\frac{1}{\sqrt{2}}\left[u^{+}-u^{-}\right]$
"polarized along x-direction"
\triangleleft Boost the particle to momentum $\quad p=\left(E, 0,0, p_{z}\right)$

$$
\Longrightarrow u^{\uparrow}=\frac{N}{\sqrt{2}}\left(\begin{array}{c}
1 \\
1 \\
\frac{p_{z}}{E+m} \\
\frac{-p_{z}}{E+m}
\end{array}\right) \quad u^{\downarrow}=\frac{N}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1 \\
\frac{p_{z}}{E+m} \\
\frac{p_{z}}{E+m}
\end{array}\right) \quad \begin{aligned}
& \text { Still has } \\
& u^{\uparrow}=\left(u^{+}+u^{-}\right) / \sqrt{2}
\end{aligned}
$$

\diamond Still the eigenstates of the Pauli-Lubanski (polarization) operator:

$$
\frac{1}{2} \gamma_{5} \not n u^{\uparrow \downarrow}= \pm \frac{1}{2} u^{\uparrow \downarrow} \quad \text { where } n=(0,1,0,0)
$$

\diamond But, no longer eigenstates of the transverse-spin operator:

$$
\mathcal{S}_{x} u^{\uparrow} \neq+\frac{1}{2} u^{\uparrow}
$$

Parity and Time-reversal invariance

\square In quantum field theory, physical observables are given by matrix elements of quantum field operators

Consider two quantum states:
\square Parity transformation:

$$
\begin{aligned}
& \left|\alpha_{P}\right\rangle \equiv U_{P}|\alpha\rangle \quad\left|\beta_{P}\right\rangle \equiv U_{P}|\beta\rangle \\
& \left\langle\alpha_{P} \mid \beta_{P}\right\rangle=\langle\alpha| U_{P}^{\dagger} U_{P}|\beta\rangle=\langle\alpha \mid \beta\rangle
\end{aligned}
$$

\square Time-reversal transformation:

$$
\begin{aligned}
& \left|\alpha_{T}\right\rangle \equiv V_{T}|\alpha\rangle \quad\left|\beta_{T}\right\rangle \equiv V_{T}|\beta\rangle \\
& \left\langle\alpha_{T} \mid \beta_{T}\right\rangle=\langle\alpha| V_{T}^{\dagger} V_{T}|\beta\rangle=\langle\alpha \mid \beta\rangle^{*}=\langle\beta \mid \alpha\rangle
\end{aligned}
$$

Parity and Time-reversal invariance

\square Parton fields under P and T transformation:

$$
\begin{aligned}
& U_{P} \psi\left(y_{0}, \vec{y}\right) U_{P}^{-1}=\gamma^{0} \psi\left(y_{0},-\vec{y}\right) \\
& V_{T} \psi\left(y_{0}, \vec{y}\right) V_{T}^{-1}=\left(i \gamma^{1} \gamma^{3}\right) \psi\left(-y_{0}, \vec{y}\right) \quad \sqrt[\mathcal{J}=i \gamma^{1} \gamma^{3}]{ } \\
& \begin{array}{l}
\left\langle P, \vec{s}_{\perp}\right| \bar{\psi}(0) \Gamma_{i} \psi\left(y^{-}\right)\left|P, \vec{s}_{\perp}\right\rangle \\
=\left\langle P,-\vec{s}_{\perp}\right| \bar{\psi}(0)\left[\mathcal{J}\left(\Gamma_{i}^{\dagger}\right)^{*} \mathcal{J}^{\dagger}\right] \psi\left(y^{-}\right)\left|P,-\vec{s}_{\perp}\right\rangle
\end{array}
\end{aligned}
$$

Quark correlations contribute to polarized X-sections:

$$
\begin{gathered}
T_{i}\left(x ; \vec{s}_{\perp}\right)=-T_{i}\left(x ;-\vec{s}_{\perp}\right) \\
\Gamma_{i}=\gamma^{\mu} \gamma_{5}, \quad \sigma^{\mu \nu} \quad \text { or } \quad \sigma^{\mu \nu}\left(i \gamma_{5}\right)
\end{gathered}
$$

$\Gamma_{i}=I, \quad i \gamma_{5}, \quad \gamma^{\mu} \quad$ contribute to spin-avg X-sections:

Polarized deep inelastic scattering

\square Pictorially:

$$
\begin{aligned}
& \Delta q(x)=|\xlongequal{P_{P,+}^{\Longrightarrow}} \overbrace{}^{x P}+\left.\right|^{2}-| \xlongequal{P^{P,+}} \xlongequal{x P}\}\left.X\right|^{2}
\end{aligned}
$$

\square Note:
No transversity contribution to inclusive DIS!

$$
\phi(x)=\frac{1}{2}\left[q(x) \gamma \cdot P+s_{\|} \Delta q(x) \gamma_{5} \gamma \cdot P+\delta q(x) \gamma \cdot P \gamma_{5} \gamma \cdot S_{\perp}\right]
$$

GPDs - role in solving the spin puzzle

\square Quark "form factor":

$$
\begin{aligned}
& F_{q}\left(x, \xi, t, \mu^{2}\right)=\int \frac{d \lambda}{2 \pi} \mathrm{e}^{-i x \lambda}\left\langle P^{\prime}\right| \bar{\psi}_{q}(\lambda / 2) \frac{\gamma \cdot n}{2 P \cdot n} \psi_{q}(-\lambda / 2)|P\rangle \\
& \equiv H_{q}\left(x, \xi, t, \mu^{2}\right)\left[\overline{\mathcal{U}}\left(P^{\prime}\right) \gamma^{\mu} \mathcal{U}(P)\right] \frac{n_{\mu}}{2 P \cdot n} \\
&+ E_{q}\left(x, \xi, t, \mu^{2}\right)\left[\overline{\mathcal{U}}\left(P^{\prime}\right) \frac{i \sigma^{\mu \nu}\left(P^{\prime}-P\right)_{\nu}}{2 M} \mathcal{U}(P)\right] \frac{n_{\mu}}{2 P \cdot n} \\
& \text { with } \xi=\left(P^{\prime}-P\right) \cdot n / 2 \text { and } t=\left(P^{\prime}-P\right)^{2} \Rightarrow-\Delta_{\perp}^{2} \text { if } \xi \rightarrow 0 \\
& \tilde{E}_{q}(x, \xi, t, Q) \quad \text { Different quark spin projection }
\end{aligned}
$$

\square Total quark's orbital contribution to proton's spin:

$$
\begin{aligned}
J_{q} & =\frac{1}{2} \lim _{t \rightarrow 0} \int d x x\left[H_{q}(x, \xi, t)+E_{q}(x, \xi, t)\right] \\
& =\frac{1}{2} \Delta q+L_{q}
\end{aligned}
$$

\square Connection to normal quark distribution:

$$
H_{q}\left(x, 0,0, \mu^{2}\right)=q\left(x, \mu^{2}\right) \quad \text { The limit when } \quad \xi \rightarrow 0
$$

