Detector design concept of the EIC

Vertex Detectors & Calorimeters

Olga Evdokimov (UIC)

Inspired by presentations from D. Cockerill, S. Easo , T. Hemmick, A. Kiselev, A Papanestis, D. Petyt, O. Tsai

Outline

Introduction

- Foundations & motivation for the EIC program
- Basics of Deep Inelastic Scattering and DIS kinematics
- EIC accelerator and detector requirements
- Building blocks of EIC multipurpose detector
 - Tracking detectors
 - Vertex reconstruction
 - Calorimeters
 - Detectors for Particle Identification
 - **Summary and Tutorial**

Outline: Tracking & Vertex Detectors

Silicon Trackers as vertex detectors

- Momentum measurements
 - Energy loss
 - Momentum reconstruction

- Momentum resolution
 - Resolution for a measured track
 - Effects of multiple scattering

Vertex Detectors: Si

- Vertex detectors are trackers, but:
- Fine(r) spatial resolution (< 50 μm) and close to interaction

Gas detectors \rightarrow Silicon detectors

- Design considerations:
 - Close to interaction region (beam) \rightarrow radiation damage
 - Material budget (to minimize losses)
 - Reconstruction (higher track/hit density)
 - Price

- Semiconductor acts as ionization chamber
- Propagating charged particles creates electron/ hole pairs
- Charges drift& recorded by closest electrode
- Electrode location == hit

08/08/2021

Gas vs. Si Detectors

Gas Detectors

- 26 eV needed to produce e/ion pair
- ~100 e/ion pairs per cm
- Amplification ~10⁶
- Typical noise > 3000 e-
- Material budget: lowest
- Cost: low
- Typical resolution: ~ 100μm

- Silicon Detectors
 - 3.65 eV needed to produce e/hole pair
 - 10⁶ e/h pairs per cm (scale to size ~ 100 μm)
 - No intrinsic amplification (typically)
 - Typical nose ~100e- (pixels) ~1000e- (strips)
 - Material: higher (particularly support)
 - Cost: high
 - Resolution: 1-10μm

Pixel Sensors

Hybrid pixels:

- Sensitive volume and readout electronics on separate chips
- Electronics bump-bonded to each pixel
- Most commonly used in silicon vertex trackers
- Radiation tolerant and fast (but high material)
- Example: ATLAS/Pixel CMOS

Monolithic Active Pixel Sensors (MAPS):

- Sensitive volume and readout electronics on same chip
- Made using commercial CMOS technology
- Thin and high granularity
- Slower
- Example: STAR-HFT/Pixel

Si Detector Examples

Semiconductor detector: strips, pixels (DEPFET, MAPS, CMOS)

STAR HFT

CMS Si-tracker

ATLAS Si-tracker

Olga Evdokimov (UIC)

CFNS EIC Summer School

08/08/2021 7

Si Tracker for EIC

- Requirements: Spatial resolution: ~5 μm (20 μm pixel pitch), material budget: < 0.3%
 X/Xo per layer, Integration time ~2 μs, low power consumption
- Multiple technologies were considered: hybrid pixel, Si strips, Low Gain Avalanche Detectors (LGAD), MAPS.
- Consensus on technology of choice: MAPS/DMAPS
 - A dedicated EIC MAPS sensor is desired solution \rightarrow generic R&D

eRD25 & EIC Si Consortium

EIC Si Tracker Developments

- Close collaboration with ALICE-ITS₃ collaboration to develop new generation MAPS sensors (leverage on a large effort at CERN)
- EIC sensor development will take-off ITS3 design later
- Projected pointing resolution:

Detectors to Physics: Tracking

Tracking basics: building trajectory

- 1D straight line as staring model; 2 layers → perfect fit (no uncertainty)
- Use staring line model and extrapolate
- The further you extrapolate the bigger the error
- Adjust your model as the number of hits grows
- Track parameters are extracted typically by Least-Squares Minimization
- Next steps
 - Extrapolate track back to the point of origin
 - Reconstruct primary vertex → track impact parameters; refits
 - Reconstruct decay vertices

Detectors to Physics: Tracking

 \bigotimes^B

Tracking fitting (solenoidal field)

• Lorentz force $F_L = q \ \vec{v} \times \vec{B}$; with constant B-field: circular motion in transverse plane:

 $p_{\mathrm{T}}\left[\mathrm{GeV}\right] = 0.3B\left[T\right] R\left[m\right]$

$$s = R - R\cos\frac{\phi}{2} \approx R\frac{\phi^2}{8} \qquad \phi = \frac{L}{R}$$

• Thus:
$$\frac{\Delta p_{\mathrm{T}}}{p_{\mathrm{T}}} = \frac{\Delta R}{R} = \frac{\Delta \phi}{\phi} \approx \frac{\Delta s}{L^2} \cdot \frac{8p_{\mathrm{T}}}{B}$$

Glückstern, 1963: $\frac{\sigma(p_T)}{p_T} = \frac{\sigma(x) \cdot p_T}{0.3BL^2} \sqrt{\frac{720}{N+4}}$

Tracking: Momentum Resolution

Assume that your tracking is provided by 3 layers only with equal 1D spatial resolution $\sigma_{\! X}$

• What is the momentum resolution in terms of σ_x ?

Tracking: Momentum Resolution

Assume that your tracking is provided by 3 layers only with equal 1D spatial resolution $\sigma_{\! X}$

- What is the momentum resolution in terms of σ_x ?
- Since we have relation $\frac{\Delta p_T}{p_T} = \frac{\Delta_s \ 8 \ p_T}{0.3 B L^2}$, we need to find uncertainty in sagitta

From pure geometry
$$s = x_2 - \frac{x_1 + x_2}{2}$$
, then

$$\Delta_s = \sqrt{\sigma_x^2 + \frac{\sigma_x^2}{4} + \frac{\sigma_x^2}{4}} \quad \text{and} \ \frac{\Delta p_T}{p_T} = \frac{\sigma_x \sqrt{96} p_T}{0.3BL^2}$$

Olga Evdokimov (UIC)

$$\bigotimes^{B}$$

$$\sum_{l=1}^{\frac{1}{2}}$$

$$\sum_{l=1}^{\frac{1}{2}}$$

$$\sum_{l=1}^{\frac{1}{2}}$$

$$\sum_{l=1}^{\frac{1}{2}}$$

$$\sum_{l=1}^{\frac{1}{2}}$$

$$\sum_{l=1}^{\frac{1}{2}}$$

$$\sum_{l=1}^{\frac{1}{2}}$$

$$\sum_{l=1}^{\frac{1}{2}}$$

 $0.3BL^{2}$

 p_T

Detectors to Physics: Tracking

 So, for layered t 	tracker	s: momentum resolution:	$\frac{\sigma(p_T)}{p_T} =$	$=\frac{\sigma(x)\cdot p_T}{0.3BL^2}\sqrt{\frac{1}{2}}$	$\frac{720}{N+4}$
Worsens w	with p_T	Improves with B			
Worsens w	vith σ_x	Improves with L			
• Examples:	CMS	Δpt/pt= 1.5· 10 ⁻⁴ pt+0.005 (pt ~ 50-500GeV, 4T, L~1.1m σx~50μm	for 100GeV	1.5%,η=0)	
	ATLAS	: Δpt/pt= 5· 10 ⁻⁴ pt + 0.01 (pt ~ 50-500GeV, 2T, L~1m σx~200µm	1, for 100Ge\	/ 3.8%, η=0)	
	EIC:	(pt ~ 1-10 GeV , 3T σx~100μm for 100G	eV ~ 3% , fo	r 10GeV ~0.3%)	
Olga Evdokimov (UIC)		CFNS EIC Summer School		08/08/2021	14

Multiple Scattering

Reality is more complicated: Multiple Scattering

- Changes the trajectory of charged particle
- The smaller the momentum, the higher the effect
- Depends on distance and density of a material

$$\Delta \phi \approx \frac{14 \,\mathrm{MeV}}{p} \sqrt{L/X_0} \qquad p = \frac{p_{\mathrm{T}}}{\tan \theta}$$
$$\frac{\Delta p_{\mathrm{T}}}{p_{\mathrm{T}}}\Big|_{\mathrm{m.s.}} \approx \frac{14 \,\mathrm{MeV}}{p} \sqrt{\frac{L}{X_0}} \cdot \frac{R}{L} = \frac{14 \,\mathrm{MeV}}{p} \sqrt{\frac{1}{LX_0}} \frac{p_{\mathrm{T}}}{eB}$$

 $rac{\Delta p_{\mathrm{T}}}{p_{\mathrm{T}}} = a \cdot rac{p_{\mathrm{T}}}{BL^2} \ \oplus \ b(heta) \cdot rac{1}{B\sqrt{LX_0}}$

Thus:

Olga Evdokimov (UIC)

Summary: Momentum Resolution

• Momentum resolution includes two terms:

$$\left(\frac{\sigma_{P_T}}{p_T}\right)_{Total} = \sqrt{\left(\left(\frac{\sigma_{P_T}}{p_T}\right)_{mes}\right)^2 + \left(\left(\frac{\sigma_{P_T}}{p_T}\right)_{m.s.}\right)^2}$$

• Position (or "measurement) resolution:

$$\frac{\sigma(p_T)}{p_T} = \frac{\sigma(x) \cdot p_T}{0.3BL^2} \sqrt{\frac{720}{N+4}}$$
 Multiple Scattering:

$$\left. \frac{\Delta p_{\rm T}}{p_{\rm T}} \right|_{\rm m.s.} \approx \left. \frac{14 \,{\rm MeV}}{p} \sqrt{\frac{1}{LX_0}} \frac{p_T}{eB} \right.$$

Tracking: Wrapping Up

EIC Tracking options:

- Vertex detector:
 - MAPS
- Central tracker:
 - TPC, All-silicon, μMEGAs, Straw tube tracker
- Endcap trackers: Large-area GEMs
 - μMEGAs, μ RWELL, GEM-TRD
- Forward & backward trackers:
 - MAPS, high resolution GEMs
- Close-to-beamline instrumentation (was not discussed today)

Outline: Calorimeters

- Introduction to calorimetry
- Know your technology options:
 - Calorimeter types
 - Examples of calorimeters
 - Properties and design considerations
- Energy resolution
- Clustering & energy reconstruction
- Particle Flow algorithm

Calorimeters

- All calorimeters measure particle energy through
 - Stopping the particle
 - Converting the energy into something detectable (light, current)
 - Basic mechanism: EM and hadronic showers
 - The measured output is ~proportional to the particle energy
- Calorimeters also provide location of the stopping
 - Showers are relatively well localized
 - Calorimeters are segmented

If collision vertex is known \rightarrow neutral particle direction

Calorimeter Types

 Calorimeters are typically divided into dedicated electromagnetic and hadronic detectors

- Electromagnetic calorimeters:
 - e^{\pm} and photons
 - e^{\pm} could be matched to tracks
- Hadronic calorimeters:
 - charged hadrons: π^{\pm} , K^{\pm} , p
 - neutral hadrons: n, K_L^0
 - charged hadrons could be matched to tracks

Calorimeter Uses

Energy measurements:

- Particle energy E absorbed in calorimeter
- Extracted signal is proportional to E
- Particle Identification:
 - Energy deposit patterns
 - Stopping location
 - Track matching (for charged particles)
- Combination of calorimeter and tracking information^{*} is the foundation for *Particle Flow* algorithm * and other subsystems if any

Olga Evdokimov (UIC)

CFNS EIC Summer School

08/08/2021 21

Calorimeter Classification

Homogeneous:

- Single medium for absorber and detector
 - Liquefied noble gases (Kr,Xe,Ar)
 - Organic liquid scintillators
 - Dense organic crystals

Sampling:

- Layers of passive absorber and active material
 - Absorbers: Lead, Tungsten, Copper
 - Active material: Scintillator/Si/Ar

Calorimeter Classification

• Homogeneous:	Signal	Active medium	
 Pros: optimal energy resolution 	Scintillation Light	PbWo ₄ , BGO, BaF ₂ , CeF ₂ ,	
Cons: very expensive	Cherenkov Light	Lead glass	
 Used exclusively used for electromagnetic 	Ionization signal	Liquid Nobel gasses (Ar, Kr, Xe)	
	Absorber	Active medium	
• Sampling:	Absorber Fe	Active medium Plastic scintillator	
 Sampling: Pros: compact, cheaper (more passive material) 	Absorber Fe Pb	Active medium Plastic scintillator Si Detectors	
 Sampling: Pros: compact, cheaper (more passive material) Cons: only part of E is recorded; fluctuations 	Absorber Fe Pb U	Active medium Plastic scintillator Si Detectors Gas Detectors	

Calorimeter Event Displays

Olga Evdokimov (UIC)

CFNS EIC Summer School

08/08/2021 25

Critical Energy

- Electron and photon interactions with material:
 - Higher E: dominated by bremsstrahlung (electrons) and pair production (photons) → shower multiplicity grows exponentially
 - Lower E: dominate by ionization
 → shower is "dying out"
- Critical energy, E_c: ionization and radiation processes contribute equally

Fractional energy loss per radiation length

• Electromagnetic shower:

- Electrons lose energy via bremsstrahlung with characteristic path length X₀
- Photons convert to lower energy electrons via pair production with characteristic path length $\frac{9}{7}X_0$
- Shower multiplication and development

• Electromagnetic shower:

- Ionization losses are similar to bremsstrahlung and pair production
- Peak particle multiplicity reached \rightarrow position of shower maximum: s_{max}
 - s_{max} depends logarithmically on incident particle energy: $s_{max} \sim ln \left(\frac{E_{inc}}{E_c}\right)$ (CMS example: $s_{max} \sim 5X_0$ for a 10 GeV electron in PbWO₄)

CFNS EIC Summer School

28

• Electromagnetic shower:

Below *E_c*:

- Ionization losses dominate over bremsstrahlung and pair production losses
- Slow decrease in number of shower particles
- Electrons and positrons range out

FABIAN & LUDLAM (1982)

Longitudinal shower containment depends on energy $L(95\%) = (s_{max} + 0.08Z + 9.6) [X_0]$ (CMS example: 100 GeV electron in PbWO₄ crystal contained within ~20X₀)

• Electromagnetic shower:

Lateral shower development

• Described by Moliere radius (R_M): 90% of shower is contained in a cylinder of radius R_M

$$R_M = 21.2 MeV \frac{X_0}{E_c}$$

CMS example:

Crystal length: 23cm ($25X_0$) – minimizes end "leakage"

Crystal cross-section: 2.2cm ($\sim R_M$) – maximizes granularity (while lateral "leakage" is minimized by summing energy over 3x3 crystals)

Hadronic shower:

Shower development

- Determined by interaction length λ_I of the detector medium
- λ_I is a mean free path between inelastic collisions

 $\lambda_I \sim A^{1/3}$ (16.7 cm in Pb)

multiparticle production

π±,πº,K

nuclear breakup

spallation neutrons, protons

electromagnetic component

π∘→үү

Olga Evdokimov (UIC)

• Radiation length X_0 (electromagnetic) vs. interaction length λ_I (nuclear)

- For most absorbers, $\lambda_I \gg X_0 \rightarrow$
 - HCals are typically much bigger than ECal (to fully contain the hadronic shower)
 - HCals are always placed after ECals

Material	Z	A	Z/A	X ₀ (cm)	λ _I (cm)	Density (g/cm³)
H ₂ (liquid)	1	1.008	0.992	866	718	0.0708
He	2	4.002	0.500	756	520	0.125
С	6	12.01	0.500	18.8	38.1	2.27
Al	13	26.98	0.482	8.9	39.4	2.70
Cu	29	63.55	0.456	1.43	15.1	8.96
Pb	82	207.2	0.396	0.56	17.1	11.4
W	74	183.8	0.403	0.35	9.58	19.3
U	92	238.0	0.387	0.32	10.5	19.0
Scint.			0.538	42.4	81.5	1.03

Hadronic shower:

Shower development

- EM component is most significant at the beginning of the shower; falls-off exponentially
- Longitudinal containment:
 - 90% of hadronic shower from 100 GeV pion contained in $\sim 10\lambda_I$ (1.7m of Pb)
 - Peak in shower profile at $\sim 1 \lambda_I$

• Hadronic shower:

Shower development

- EM component is most significant at the beginning of the shower; falls-off exponentially
- Lateral containment:
 - Hadron showers are larger and broader than EM showers
 - 90% containment of hadronic shower from 100 GeV pion is within ~1 λ_I (17cm of lead)

 \rightarrow reflected in larger dimensions of HCals are generally bigger than ECals

Credit: D. Petyt

Hadronic Cascades

• Simulations of hadron showers:

 Unlike electromagnetic showers, hadron showers do not show a uniform deposition of energy throughout the detector medium

Designing a Calorimeter

• Shower max:
$$S_{max} = ln\left(\frac{E}{E_c}\right) \pm 0.5[X_0]$$
 (E is the incident particle energy)

- Critical energy: $E_c = \frac{610 \text{ MeV}}{Z+1.24}$
- Longitudinal shower containment at 95% level is L(95%)= $(s_{max} + 0.08Z + 9.6) [X_0]$

Let's determine basic characteristics for ECal based on PbWo4 and Lead Glass crystals for electron of 10 GeV and 100 GeV PbWo4 E_c = 9.64 MeV (for e⁻)

 $X_0 = 0.8903 \text{ cm}$

Elem	Ζ	Atomic frac*	Mass frac
Pb	82	1.00	0.455347
w	74	1.00	0.404011
0	8	4.00	0.140462

Lead Glass $E_c = 10.41 \text{ MeV} \text{ (for } e^-\text{)},$ $X_o = 1.265 \text{ cm}$

Composition:

Elem	Ζ	Atomic frac*	Mass frac
0	8	1.00	0.156453
Si	14	0.29	0.080866
Ti	22	0.02	0.008092
As	33	0.00	0.002651
Pb	82	0.37	0.751938

Designing a Calorimeter

Let's determine basic characteristics for ECal based on PbWo4 and Lead Glass crystals for electron of 10 GeV and 100 GeV

- For PbWO4
 - $Z_{eff}(PbW04) = (82 \times 0.455 + 74 \times 0.404 + 4 \times 0.14) = 67.76$
 - $S_{max} (10 \text{ GeV e}) = \ln(10000/9.64) 0.5 = 6.45 [X_0]$
 - $S_{\text{max}}(100 \text{ GeV } e) = \ln(100000/9.64) 0.5 = 8.74 [X_0]$
 - $L(95\%, 10 \text{ GeV } e) = 6.45 + 0.08 \times 67.76 + 9.6 = 21.47[X_0] \sim 19 \text{ cm}$
 - $L(95\%, 100 \text{ GeV } e) = 8.74 + 0.08 \times 67.76 + 9.6 = 23.76[X_0] \sim 21 \text{ cm}$

• For Lead Glass

- Z_{eff} (Lead Glass) = $(8 \times 0.15 + 14 \times 0.08 + 22 \times 0.008 + 33 \times 0.002 + 82 \times 0.752) = 64.22$
- $S_{max} (10 \text{ GeV e}) = \ln (10000/10.41) 0.5 = 6.37 [X_0]$
- $S_{max} (100 \text{ GeV e}) = \ln (100000/10.41) 0.5 = 8.67 [X_0]$
- $L(95\%, 10 \text{ GeV}) = 6.37 + 0.08 \times 64.22 + 9.6 = 21.10[X_0] \sim 27 \text{ cm}$
- $L(95\%, 100 \text{ GeV}) = 8.67 + 0.08 \times 64.22 + 9.6 = 23.40[X_0] \sim 29.6 \text{ cm}$

PbWo4

 $E_{c} = 9.64 \text{ MeV} (\text{for } e^{-})$

 $X_0 = 0.8903$ cm

Elem	Ζ	Atomic frac*	Mass frac
Pb	82	1.00	0.455347
W	74	1.00	0.404011
0	8	4.00	0.140462

calculated from mass fraction data

Lead Glass $E_c = 10.41 \text{ MeV} \text{ (for } e^-\text{)},$ $X_o = 1.265 \text{ cm}$

Composition:					
			- 35		

Elem	Z	Atomic frac*	Mass frac
0	8	1.00	0.156453
Si	14	0.29	0.080866
Ti	22	0.02	0.008092
As	33	0.00	0.002651
Pb	82	0.37	0.751938
* calc	ulat	ed from mass f	raction data

37

Calorimeter Resolution

Calorimeter Resolution:

- Stochastic term:
 - photon statistics, sampling fluctuations
- Constant term:
 - non-uniform detector response
 - channel-to-channel mis-calibration
 - longitudinal leakage
- Noise term:
 - Electronic noise

Resolution improves with energy (up to the constant term)

Olga Evdokimov (UIC)

CFNS EIC Summer School

Noise term

Parameterized as follows:

 $= -\frac{a}{\sqrt{a}} \oplus$

Stochastic term

Constant term

 $b \oplus$

Detector to Physics

Cluster Reconstruction

- After readout of energy deposited to the calorimeter by the incident particles, clustering techniques are often employed for energy reconstruction and PID
- Clustering algorithm groups individual channel energies; many implementations
- Common clustering approach: scan calo cells for local maximum (usually with a predefined threshold) then build a cluster around
- Variations include fixed window/fixed cone size or dynamic cluster building (above certain thresholds)
- Next multivariate cluster corrections: improve energy determination by employing event information (i.e. showering/ non-showering, proximity to dead regions)

(HIN data usually require some form of data-driven pedestal subtraction)

Detector to Physics: Particle ID

Electrons vs. Photons vs. Jets

- Global analysis (Particle Flow algorithm)
- Energy deposit in EM calorimeter
 - Energy nearly completely deposited in ECal
 - No energy in HCal (hadronic leakage)
- Cluster shape check
 - narrow" e/γ vs "broad" mainly jets
 - substructure: $\pi^{\circ} \rightarrow \gamma \gamma$
- "Track back"
 - electrons has a track pointing to the cluster
 - Photons do not (but mind photon conversion)

Momentum measurement for e: combination of tracking and calorimeter information

Detector to Physics: π° ID

 Neutral pion measurement/suppression is allowed through ECal measurements. Decay channel:

$\pi^0 \rightarrow \gamma\gamma$

Decay photons are detected by Ecal, providing energy and *location*; together with primary vertex location one can build 4-momenta for invariant mass technique

For large boosts/small opening angles: ECal is combined with high granularity Preshower

Calorimeters for EIC

- General design considerations:
 - (high) resolution, especially for ECAL
 - (high) granularity (for particle ID and position measurement)
 - Compact and hermetic
- YR requirements for EIC ECal

	η	-4 to -2	-2 to -1	-1 to 1	1 to 4
I	$\sigma_E/E \cdot \sqrt{E/1 \text{GeV}}$	2%	7%	10-12%	10-12%

- Detect the scattered electrons in order to separate them from pions and also improve the energy/momentum resolution at large |η|.
- Detect neutral particles photons, and measure the energy and the coordinates of the impact.
- PID: separate secondary electrons and positrons from charged hadrons.
- Provide a spacial resolution of two photons sufficient to identify decays $\pi^0 \rightarrow \gamma \gamma$ at high energies.

EIC ECal Options

Homogeneous

- **PbWO4**: well-established technology. High resolution, compactness, radiation hardness
- Scintillating glass: a new, cheaper material.
 Expected resolution ~ PbWO4. Cheaper. But: less dense, needs more space
- Lead glass: uses Cherenkov light, typical resolution of a~ 6%. But: less dense, needs more space

EIC ECal Options

Sampling

- Pb/ScFi or W/ScFi: fibers are embedded into a heavy material. Established technology. Resolution varies between 6-15%
- Shashlyk a stack of absorber and scintillator plates. The light is collected by fibers passing through the plates. Widely used technology. Resolution varies between 5-15%.

Hybrid Options Explored: Electron side

- Electron "end cap" -- most demanding resolution requirements
- Hybrid approach: a mix of new and old technologies
- Crystal only option for General Purpose EIC detector needs ~7600 (2x2x20 cm³) PWO4 modules → Weight: 5-6 tons!
- Possible Hybrid PWO₄+ SciGlass option
 - 1976 (2*x*2*x*20 cm³) Crystal modules
 - 1104 (4x4x40 cm³) Glass modules

Options Explored: Central Region

- Another hybrid approach: a mix of new and old technologies
- ECal: Sci-Glass calorimeter
- 4 × 4 × 45.5 cm partially projective towers
- HCal: Fe-Sci Tile Calorimeter
- Re-use sPHENIX outer HCal
- Read-out upgrade with new SiPMs

Olga Evdokimov (UIC)

Options Explored: Central Region

Hybrid imaging calorimeter

- Inside→out
 - LGAD timing layer to help PID
 - Imaging calorimeter based on monolithic silicon sensors
 - W/SciFi (starting configuration is based on GlueX)
- Silicon pixel sensors: AstroPix (developed for NASA, off-the shelf)
 - Energy resolution:~2% within dynamic range (20keV to ~a few MeV)

Options Explored: Central Region

KLM-type calorimeter

- Based on optimized design of Belle KLM device
- Goal to detect K_L^0 and muons
- Belle II studies:
 - high efficiency and purity for muons above ~ 0.6 GeV
 - good angular resolution (~ 2 deg) for the K_L^0

Possible realization:

- layers of ~20mm Fe and~ 5 mm plastic scintillator in 10x10 cm² cells
- Could reuse STAR BEMC Scintillator mega-tiles with SiPM readout
- Each layer ~80 tiles; 5-7 layers

Options Explored: Forward

- Another mix: a system of W/SciFi + Fe/Sc
- ECAL: W/ScFi ECAL
 - Compact, high resolution
 - Similar technology is used for sPHENIX
- HCal : Fe/Sc
 - Latest tests: $\sim 30\%/\sqrt{E}$ + small constant term
 - Similar to STAR Forward HCal upgrade longitudinally separated Fe-Sci tile calorimeter

ECal options: 18 Xo / 23 Xo. Could reuse PHENIX

HCal options: Fe/Sc of 20 mm Fe and 3 mm plastic; needs $\sim 6 - 7 \lambda$ total

Calorimeters: Wrapping Up

- Calorimeters are crucial parts for Nuclear (and Particle) Physics detectors
 - Provide energy measurements of electrons/photons, jets and (neutral) hadrons
 - Aid/provide PID capabilities
- Several design choices available for each of the EIC generic detector regions: backward, central, forward
 - No straightforward "right" or "wrong" choices
 - Optimization is crucial for desired performance