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Outline:  PID

• Particle Identification techniques:

• Ionization energy loss

• Time of Flight

• Cherenkov radiation

• RICH

• DRICH

• mRICH

• Transition radiation (again)

• Summary
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Particle Identification

• PID for hadrons

Differentiate between 𝜋𝜋,𝐾𝐾,𝑝𝑝,𝑑𝑑
Must-have for “flavor physics”

• PID for e/γ
Distinguish between e,𝜋𝜋, 𝛾𝛾
Kinematics(!), jets, flavor physics
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Particle Identification ↔ Particle velocity
Lorentz boosts: 𝛾𝛾 = 𝐸𝐸

𝑚𝑚
𝛽𝛽 = |𝑝̅𝑝|

𝐸𝐸
𝛽𝛽𝛽𝛽 = |𝑝̅𝑝|

𝑚𝑚
measure velocity → determine mass

Direct measurements:

Record signal time at 
multiple locations, find v

Must be fast == low transit 
time spread

(TOF)

Specific Ionization Energy 
Loss (dE/dx)
(TPC, Si, …)

Cherenkov Radiation:  
cos𝜃𝜃𝐶𝐶 = 1

𝑛𝑛𝛽𝛽
(RICH, dRICH, mRICH,…)

Velocity-dependent interaction(s) with detector:

TRD,
Ecal
Hcal
PF



Specific Ionization Energy Loss

• Back to Bethe-Block formula

• 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 measurements are best suited for PID at 
low momenta:  ( 0.2 < 𝛽𝛽 < 0.9)
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TPC @ STAR/RHIC

Si @ CMS/LHC



Time of Flight
• At more massive particle has smaller velocity at a given 

momentum → travels longer time over a given distance

• TOF design idea: assuming particle momentum is 
known (tracking), measure velocity

𝑣𝑣 = 𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇
(𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

to extract mass

• Mass resolution depends on the momentum, path 
length and timing resolution 

• Time difference for two particles with masses 𝑚𝑚1 and 
𝑚𝑚2 for length 𝐿𝐿 and momentum 𝑃𝑃 :

• For 𝑃𝑃2 ≫ 𝑚𝑚2𝑐𝑐2
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∆𝑡𝑡 =
𝐿𝐿
𝛽𝛽1𝑐𝑐

−
𝐿𝐿
𝛽𝛽2𝑐𝑐

=
𝐿𝐿
𝑐𝑐 1 +

𝑚𝑚1
2𝑐𝑐2

𝑃𝑃2 − 1 +
𝑚𝑚1
2𝑐𝑐2

𝑃𝑃2

∆𝑡𝑡~
𝐿𝐿𝐿𝐿(𝑚𝑚1

2 − 𝑚𝑚2
2)

2𝑃𝑃2



Time of Flight

• Example: TOF @  ALICE/LHC: 

• 3σ π/K separation up to 2.2 GeV/c and K/p 
separation up to 4 GeV/c

• MRPC  with glass resistive plates

• 2 × 5 gaps : 250 µm

• Readout by High Performance Time to 
Digital Converter (HPTDC chip)
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σ=50.8ps

http://aliceinfo.cern.ch/Public/en/Chapter2/Chap2_TOF.html



Time of Flight for EIC
Considerations for EIC applications: 

• Full mass resolution is a convolution of 
momentum, path length and timing resolutions 

• → best if  

• large detector; 

• low momentum; 

• excellent timing
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sPHENIX Multigap Resistive Plate Chamber 
(MRPC) R&D: achieved ~18 ps with 36-105 μm gaps



Time of Flight for EIC

• EIC simulation of TOF PID capabilities for 10 𝑝𝑝𝑝𝑝
timing  resolution: 𝜋𝜋/𝐾𝐾 𝐾𝐾/𝑝𝑝

• R&D possibilities: fast silicon R&D

• LGAD

• DJ-LGAD, TI-LGAD

• SSEM
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And Two are Better Than 
One

• Combining dE/dx and Time-of-flight 
measurements allows to enhance PID 
performance significantly

• Examples (TOF+TPC): 

• NA49 /SPS

• STAR/RHIC
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Cherenkov Radiation
• Cherenkov radiation is emitted when a 

charged particle moves through material 
faster than the speed of light in that medium: 
𝛽𝛽 > 1

𝑛𝑛

• It is emitted at an angle, defined by particle 𝛽𝛽
and medium refractive index 𝑛𝑛:

cos𝜃𝜃 = 1/(𝛽𝛽𝑛𝑛)

• The energy radiated by the charged particle as 
Cherenkov Radiation per unit length 

• 1888: Heaviside predicts the cos𝜃𝜃 = 1/(𝛽𝛽𝑛𝑛)
dependance

• ~1900: Marie & Pierre Curie observe ‘blue 
glow’ in fluids containing concentrated 
Radium 

• 1934: discovery and validation of Cherenkov 
effect : 1934-37

• 1937: full explanation using Maxwell’s 
equations: I.M. Frank and I.E. Tamm 

08/08/2021Olga Evdokimov (UIC) CFNS EIC Summer School 10

1958: P. Cherenkov, I. Frank , I. Tamm

“for the discovery and the interpretation of the 
Cherenkov effect”

θ
Charged particle

photon



Cherenkov Detectors

Cherenkov Detectors:

• Threshold Counters

• Imaging Counters:

• Differential Cherenkov Detectors

• Ring Imaging Cherenkov Detectors (RICH)

• Dual-radiator RICH (dRICH)

• Modular RICH (mRICH)

• Detector for Internally Reflected light (DIRC)
• …
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Cherenkov Angle vs Charged Particle Momentum

• Plus: types of Photodetectors:

• Gaseous

• Vacuum Based 

• Solid State



Threshold Counters

• Signal is (always) produced only by particles above 
Cherenkov Threshold, 𝛽𝛽 > 1

𝑛𝑛

Threshold Counter:

• Basic version: 

• Yes/No decision on presence of particles

• Counts the number of photoelectrons detected

• Improved version: 

• Use the number of observed photoelectrons or a 
calibrated pulse height  to discriminate between 
particle types
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Threshold Counters: BELLE’s Example
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BELLE: Threshold Cherenkov Detector

Test-beam study

• Detects about 20 
photoelectrons  per 
pion @ 3.5 GeV

• More than 3𝜎𝜎 𝜋𝜋/𝑝𝑝
separation

BELLE design: 5 aerogel tiles  inside 
Al box  lined with a white reflector



RICH Detectors

RICH - Ring Imaging Cherenkov detectors:

• Measure both the Cherenkov angle and the number of 
photoelectrons detected

• Can be used for PID over large areas
• Requires excellent photodetection (best with single 

photon ID capabilities)

Established technology, used in multiple 
experiments: DELPHI, ALICE, LHCb, … 
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Proximity RICH

Focusing RICH



Photon Detection

• Rather, detection of photoelectrons:

• Convert 𝛾𝛾 to photoelectrons on 
photocathode

• Detect those photoelectrons as “charged 
particles”

• Measure the position and /or time

• Main options:

• Gas based detectors: MWPCs, GEMs

• Vacuum based detectors: PMT  HPD

• Solid state detectors: SiPMs

Making your choices: 

Gaseous:

• Pros: can operate in high magnetic field; 
cheapest option

• Cons: issues related to photon and ion 
feedback; max resolution in visible wavelength 
range

Vacuum-based:

• Pros: can operate at high rates (LHC); uniform 
gains / small noise

• Cons: sensitivity to magnetic field; active area 
fraction
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RICH Options for EIC

• At EIC: possible option for backward (electron side) 
direction

• Particle ID at low/mid- momenta: allows pion/Kaon 
separation up to ~8 GeV; e/pion to ~4

• Design basics: 
• Radiator: aerogel (low density transparent radiator, 
𝑛𝑛~1.03) 

• Reflector: Fresnel lens

• Sensor: 3 mm pixel size, LAPPD
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EIC Endcap matrix

Modular RICH (mRICH) 



RICH Options for EIC

• At EIC: considered implementation for 
forward (hadron) region

• Design basics: 

• Radiator: n = 1.02 (aerogel) ,  1.0008 (C2F6)

• Reflector: Spherical mirrors

• Sensor: 3mm pixel size,  MAPMT
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Dual-radiator RICH (dRICH)



RICH Options for EIC

• “Detection of Internally Reflected Cherenkov (light)” –
internally reflecting imaging Cherenkov detectors

• At EIC: possible option for central region

• Cerenkov light  undergoes internal reflection

• With high-resolution timing can achieve 𝜋𝜋/𝐾𝐾 separation up 
to 6 GeV
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DIRC



PID: Matching 
the EIC 

Kinematics

• Yellow Report: 

DIS electron and SIDIS pion for 
18 𝐺𝐺𝐺𝐺𝐺𝐺 𝑒𝑒− × 275 𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝

beams
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1 < 𝑄𝑄2 < 10 10 < 𝑄𝑄2 < 100 100 < 𝑄𝑄2 < 1000
electrons                          pions

10−5 < 𝑥𝑥 < 5 � 10−4 5 � 10−4 < 𝑥𝑥 < 10−2 10−2 < 𝑥𝑥 < 1



Expected Coverage for PID Options
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• Backward: mRIHC
• p/K separation up to ~10 GeV/c

• Barrel: high-performance DIRC, TOF, TPC
• p/K separation up to ~6-7 GeV/c

• Forward:  dRICH
• p/K separation up to ~50 GeV/c

• Also Forward: 
• TOF ?
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A (Possible) PID 
solution for EIC



Detectors to Physics

Pattern Recognition in (RICH) Cherenkov Detectors

• Events with large number of charged particles → overlapping  rings

• Hough Transform (ALICE):

• Project the particle direction on to the detector plane

• Accumulate the distance of each hit from these projection points  (think: rings)

• Use peaks to associate the  corresponding hits to the tracks

• Likelihood Method (LHCb):

• For each track in the event assume a given mass hypothesis,  create photons and 
project them to the detector plane using the  knowledge of detector  
geometry/properties

• Calculate the probability for signal seen in each  pixel of the detector from all tracks

• Compare this with the observed set of photoelectron signal by creating a likelihood 

• Repeat all the above after changing the set of mass hypothesis of the tracks

• Find the set of mass hypothesis, which maximize the likelihood

08/08/2021Olga Evdokimov (UIC) CFNS EIC Summer School 22

Red:  Particles from Primary and Secondary Vertex
Blue: From secondaries and background processes

LHCb:  RHIC1 MC study



Detectors to Physics

• Neutrinos via Missing-𝐸𝐸𝑇𝑇
• A technique used to reconstruct neutrino without actually seeing a neutrino (Think: charged current events! 

Also: SM tests, SUSY searches) 

• Missing energy is not a good quantity in a collider → some energy from the proton remnants is lost near the 
beampipe

• Missing transverse energy (𝐸𝐸𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) much more stable quantity! 

• Defined as a measure of the lost energy (as in “not found”) due to neutrinos:

• Reconstructing 𝐸𝐸𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 : 
• Particle flow approach in HEP has been shown to perform the best

• Need all subsystem input:  calorimeter cells, clustered; muons, PID data → matched to tracks to reconstruct event on 
“particle level”

• Special care is needed to avoid double-counting
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PID: Wrapping 
Up

• The field of Particle Identification Detectors  is an 
evolving field. 

• The particle ID using dE/dx, Time-of-Flight, RHIC and 
Transition Radiation detectors continue to provide 
reliable particle identification for Nuclear, Particle and 
Astro- Physics experiments.

• Particle identification is a crucial part for many high-
impact measurements at the upcoming EIC
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Back Up Slides
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At EIC Calorimeters are Everywhere
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• Scattering patterns for 
leptons and hadrons for 
different 𝑥𝑥 and 𝑄𝑄2

very low Q2

scattered lepton

Bethe-Heitler
photons 

for luminosity

Low Q2-Tagger

Luminosity Detector

particles from nuclear
breakup and

from diffractive reactions

ZDC

Forward Tracking

H
CA

L
EM

CA
L

P
ID

Tr
ac

ki
ng

HCAL
Magnet
EMCAL

PID
Tracking

Vertexing

H
CA

L
EM

CA
L

P
ID

Tracking



Calorimeters-101
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Credit: A. Kiselev



Explosion of Si R&D

• Very active area!

• Example: Low Gain Avalanche Detectors (LGAD)
• Single layer timing resolution < 20 ps

• Radiation tolerance: under continuous improvements

• Varieties:
• AC-LGAD: gain layer charge coupled capacitively to surface through thin (~ 

500 nm) oxide layer, segmentation provided simply by surface electrodes

• Deep Junction (DJ-LGAD)

• Trench isolated (TI-LGAD) 

• Inverse (iLGAD)…

• Other approaches to fast timing in silicon: 3D, Timepix, Solid-state 
Electron Multiplier (SSEM),…
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E. Currás, VERTEX 2020
N. Cartiglia, TF3

AC-LGAD

DJ-LGAD

TI-LGAD

iLGAD



Detection Options: SiPM

• a solid-state photodetector made of an array of 
hundreds or thousands of integrated single-photon 
avalanche diodes

• Time resolution= ~ 100 ps.

• Works in magnetic field

• High gains   ~ 106

• Single photon  detection potential

• SIPM for Cherenkov Detectors at EIC:

• Requires additional R&D but initial tests are 
promising

• SiPM can suffer radiation damage

• High impact potential!
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•holes•electronsNew advances: Silicon Photomultipliers 



Tracking: Ionization

• Mean ionization energy loss is described by Bethe-Bloch formula

• For electron (switching  some of the constants and dropping relativistic rise 
correction):

−
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 ≈ 0.307

𝑀𝑀𝑀𝑀𝑀𝑀 𝑐𝑐𝑐𝑐2

𝑚𝑚𝑚𝑚𝑚𝑚
𝜌𝜌
𝑍𝑍
𝐴𝐴

𝑧𝑧2

𝛽𝛽2 𝑙𝑙𝑙𝑙
2 0.511𝑀𝑀𝑀𝑀𝑀𝑀 𝛾𝛾2𝛽𝛽2

16 � 𝑍𝑍0.9 2 − 𝛽𝛽2

• How many electrons does a charged particle produce an average while crossing 100 
µm of Si?
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Tracking: Ionization

Supplementary information: excitation energy data (a minimum amount of 
ionization required to produce one charge carrier:

08/08/2021Olga Evdokimov (UIC) CFNS EIC Summer School 31



Tracking: Ionization

• Let’s estimate how many electrons does a charged particle produce an average while 
crossing 100 µm of Si?

• Let’s assume that the charged particle have 𝑧𝑧 = 1 and behave like a MIP. For a MIP, 
the dependance of 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 on particle energy is dominated by logarithmic term ~ln𝛾𝛾. 
Assuming that the particle is produced near global minimum of 𝛾𝛾~4 :

−𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
≈ 0.307𝑀𝑀𝑀𝑀𝑀𝑀 𝑐𝑐𝑐𝑐2

𝑚𝑚𝑚𝑚𝑚𝑚
𝜌𝜌 𝑍𝑍

𝐴𝐴
𝑧𝑧2

𝛽𝛽2
𝑙𝑙𝑙𝑙 2 0.511𝑀𝑀𝑀𝑀𝑀𝑀 𝛾𝛾2𝛽𝛽2

16 �𝑍𝑍0.9 2 − 𝛽𝛽2

≈ 0.307𝑀𝑀𝑀𝑀𝑀𝑀 𝑐𝑐𝑐𝑐2

𝑚𝑚𝑚𝑚𝑚𝑚
2.33 𝑔𝑔 𝑐𝑐𝑐𝑐3 14
28.1 𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚−1

𝑙𝑙𝑙𝑙 2 0.511𝑀𝑀𝑀𝑀𝑀𝑀 42

16 140.9𝑒𝑒𝑒𝑒
− 1 = 3.7𝑀𝑀𝑀𝑀𝑀𝑀

𝑐𝑐𝑐𝑐

Then number of electron (and holes) produced while crossing 𝑑𝑑 = 100𝜇𝜇𝑚𝑚

𝑛𝑛 =

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑑𝑑

𝜀𝜀 =
3.7𝑀𝑀𝑀𝑀𝑀𝑀 10−2𝑐𝑐𝑐𝑐

𝑐𝑐𝑐𝑐 3.6 𝑒𝑒𝑒𝑒 ≈ 104
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Cherenkov Detectors: FOM

• Frank-Tamm theory : Number of photons produced by a particle with charge 𝑍𝑍, along a 
pathlength 𝐿𝐿 :

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝛼𝛼
ℎ𝑐𝑐

𝑍𝑍2𝐿𝐿 ∫ 𝑠𝑠𝑠𝑠𝑠𝑠2 𝜃𝜃 𝑑𝑑𝐸𝐸𝑝𝑝ℎ,

where       𝛼𝛼
ℎ𝑐𝑐

= 370𝑒𝑒𝑒𝑒−1𝑐𝑐𝑐𝑐−1,      𝐸𝐸𝑝𝑝ℎ = ℎ𝑐𝑐
𝜆𝜆

If the photons are reflected by a mirror with Reflectivity 𝑅𝑅(𝐸𝐸𝐸𝐸ℎ), are transmitted through a quartz 
window of Transmission 𝑇𝑇(𝐸𝐸𝐸𝐸ℎ) and then are detected by a  photon detector with efficiency 𝑄𝑄(𝐸𝐸𝑝𝑝ℎ), 
then number of photons detected :

𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑 = 𝛼𝛼
ℎ𝑐𝑐

𝑍𝑍2 𝐿𝐿 𝑅𝑅𝑅𝑅𝑅𝑅 ∫ 𝑠𝑠𝑠𝑠𝑠𝑠2 𝜃𝜃 𝑑𝑑𝐸𝐸𝑝𝑝ℎ = 𝑁𝑁0 𝐿𝐿 𝑠𝑠𝑠𝑠𝑠𝑠2(𝜃𝜃𝑐𝑐),

assuming 𝜃𝜃 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜃𝜃𝑐𝑐 – mean Cherenkov angle

𝑁𝑁0 – is figure of merit for Cherenkov detectors
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Kinematics: EIC vs. HERA
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• HERA: the first electron-proton collider (1992-2007)

• Beam Energies: 𝑒𝑒: 27.5 𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝: 820 920 𝐺𝐺𝐺𝐺𝐺𝐺

• EIC: the new frontier for nuclear science

• Beam Energies: 𝑒𝑒: 5(20) 𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝: 50 250 𝐺𝐺𝐺𝐺𝐺𝐺

How do the two facilities compare in terms of kinematic 
reach?



Kinematics: Electron Scattering
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𝑞𝑞2 = −𝑄𝑄2 = 𝑘𝑘 − 𝑘𝑘′ – momentum transfer; virtuality 
𝜈𝜈 = 𝐸𝐸𝑒𝑒 − 𝐸𝐸𝑒𝑒′ – energy lost by lepton

𝑠𝑠 = (𝑝𝑝 + 𝑘𝑘)2 𝑦𝑦 = �𝜈𝜈 𝐸𝐸𝑒𝑒 𝑄𝑄2 = 𝑠𝑠 � 𝑥𝑥 � 𝑦𝑦



Kinematics: EIC vs. HERA

• Center of Mass Energy:  𝑠𝑠 ≈ 4𝐸𝐸𝑒𝑒𝐸𝐸𝑝𝑝
• HERA: 300 – 320 GeV

• EIC: 32 – 141 GeV

• Resolution:   𝑄𝑄2 = 𝑠𝑠𝑠𝑠𝑠𝑠 →𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚2 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
• HERA: 101,200 GeV2

• EIC: 20,000 GeV2

• x-reach: 𝑄𝑄2 = 𝑠𝑠𝑠𝑠𝑠𝑠 → 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ≈
(𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

2 ~0.1)
𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚~1)

• HERA: 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 10−7

• EIC: 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 0.5 � 10−6
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Main differences are NOT in 
kinematic coverage!
EIC will add:

– Better lepton polarization
– Target polarization
– Heavy targets (ions)
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