Detector design concept of the EIC

Particle Identification

Olga Evdokimov (UIC)

Inspired by presentations from D. Cockerill, S. Easo , T. Hemmick, A. Kiselev, A Papanestis, D. Petyt, O. Tsai

Outline: PID

Particle Identification techniques:

- Ionization energy loss
- Time of Flight
- Cherenkov radiation
 - RICH
 - DRICH
 - mRICH
- Transition radiation (again)

Summary

Olga Evdokimov (UIC)

Particle Identification

PID for hadrons

Differentiate between π , K, p, dMust-have for "flavor physics"

• PID for e/γ

Distinguish between e, π , γ Kinematics(!), jets, flavor physics TRD, Ecal Hcal PF

Particle Identification ↔ Particle velocity

Lorentz boosts: $\gamma = \frac{E}{m}$ $\beta = \frac{|\bar{p}|}{E}$ $\beta \gamma = \frac{|\bar{p}|}{m}$ measure velocity \rightarrow determine mass

Direct measurements:

Velocity-dependent interaction(s) with detector:

Record signal time at multiple locations, find v Must be fast == low transit time spread (TOF)

Specific Ionization Energy Loss (dE/dx) (TPC, Si, ...) Cherenkov Radiation: $\cos \theta_C = \frac{1}{n\beta}$ (RICH, dRICH, mRICH,...)

Olga Evdokimov (UIC)

CFNS EIC Summer School

08/08/2021

3

Specific Ionization Energy Loss

Back to Bethe-Block formula

$$\frac{\mathrm{d}E}{\mathrm{d}x} = \frac{4\pi Ne^4}{mc^2\beta^2} z^2 \left(\ln \frac{2mc^2\beta^2\gamma^2}{I} - \beta^2 \right)$$
$$p = mv = m_0\beta\gamma c$$
$$\frac{\mathrm{d}E}{\mathrm{d}x} \propto \frac{1}{\beta^2} \ln(\beta^2\gamma^2)$$

dE/dx measurements are best suited for PID at low momenta: ($0.2 < \beta < 0.9$)

Time of Flight

- At more massive particle has smaller velocity at a given momentum \rightarrow travels longer *time* over a given distance
- TOF design idea: assuming particle momentum is known (tracking), measure velocity

 $v = \frac{L_{TOF}}{(t_{ston} - t_{start})}$ to extract mass

- Mass resolution depends on the momentum, path length and timing resolution

Time difference for two particles with masses m_1 and $\Delta t = \frac{L}{\beta_1 c} - \frac{L}{\beta_2 c} = \frac{L}{c} \left[\sqrt{\left(1 + \frac{m_1^2 c^2}{P^2}\right) - \sqrt{\left(1 + \frac{m_1^2 c^2}{P^2}\right)} \right]$

For $P^2 \gg m^2 c^2$

CFNS EIC Summer School

 $\Delta t \sim \frac{Lc(m_1^2 - m_2^2)}{2R^2}$

Time of Flight

Example: TOF @ ALICE/LHC:

- 3σ π/K separation up to 2.2 GeV/c and K/p separation up to 4 GeV/c
- MRPC with glass resistive plates
- 2 × 5 gaps : 250 μm

http://aliceinfo.cern.ch/Public/en/Chapter2/Chap2_TOF.html

08/08/2021 6

Time of Flight for EIC

Considerations for EIC applications:

 Full mass resolution is a convolution of momentum, path length and timing resolutions

$$\frac{dm}{m} = \frac{dp}{p} + \gamma^2 \left(\frac{dt}{t} + \frac{dL}{L}\right).$$

• \rightarrow best if

- large detector;
- low momentum;
- excellent timing

sPHENIX Multigap Resistive Plate Chamber (MRPC) R&D: achieved ~18 ps with 36-105 μm gaps

Olga Evdokimov (UIC)

Time of Flight for EIC

EIC simulation of TOF PID capabilities for 10 ps timing resolution: K/p π/K

<u>σ_{tot}</u> =10 <u>ps</u>	1m (Barrel)	- 6 · · · · · · · · · · · · · · · · · · 	
<u>σ_{tot}</u> =10 <u>ps</u>	4m (Hadron)	• • • • • • • • • • • • • • • • • • •	0 5 10 15

- R&D possibilities: fast silicon R&D
 - LGAD
 - DJ-LGAD, TI-LGAD
 - SSEM

p+ gain lave JTE Ultra fast Silicon detector E field

TOF with better intrinsic • resolution can be put closer to the interaction point \rightarrow smaller area

Olga Evdokimov (UIC)

CFNS EIC Summer School

08/08/2021

And Two are Better Than One

- Combining dE/dx and Time-of-flight measurements allows to enhance PID performance significantly
- Examples (TOF+TPC):
 - NA49/SPS
 - STAR/RHIC

9

Cherenkov Radiation

- Cherenkov radiation is emitted when a charged particle moves through material faster than the speed of light in that medium: $\beta > \frac{1}{n}$
- It is emitted at an angle, defined by particle β and medium refractive index n:

 $\cos\theta = 1/(\beta n) -$

 The energy radiated by the charged particle as Cherenkov Radiation per unit length

$$\frac{dE}{dx} = 4\pi^2 e^2 \int_{\beta n > 1} \frac{1}{\lambda^3} \left(1 - \frac{1}{\beta^2 n^2} \right) d\lambda$$

- 1888: Heaviside predicts the $\cos \theta = 1/(\beta n)$ dependance
- ~1900: Marie & Pierre Curie observe 'blue glow' in fluids containing concentrated Radium
- 1934: discovery and validation of Cherenkov effect : 1934-37
- 1937: full explanation using Maxwell's equations: I.M. Frank and I.E. Tamm

Charged particle

Cherenkov Detectors

Cherenkov Detectors:

- Threshold Counters
- Imaging Counters:
 - Differential Cherenkov Detectors
 - Ring Imaging Cherenkov Detectors (RICH)
 - Dual-radiator RICH (dRICH)
 - Modular RICH (mRICH)
 - Detector for Internally Reflected light (DIRC)

- Plus: types of Photodetectors:
 - Gaseous
 - Vacuum Based
 - Solid State

Threshold Counters

• Signal is (always) produced only by particles above Cherenkov Threshold, $\beta > \frac{1}{n}$

Threshold Counter:

- Basic version:
 - Yes/No decision on presence of particles
 - Counts the number of photoelectrons detected
- Improved version:
 - Use the number of observed photoelectrons or a calibrated pulse height to discriminate between particle types

Threshold Counters: BELLE's Example

BELLE design: 5 aerogel tiles inside Al box lined with a white reflector

- Detects about 20 photoelectrons per pion @ 3.5 GeV
- More than $3\sigma \pi/p$ separation

RICH Detectors

RICH - Ring Imaging Cherenkov detectors:

- Measure both the Cherenkov angle and the number of photoelectrons detected
- Can be used for PID over large areas
- Requires excellent photodetection (best with single photon ID capabilities)

Established technology, used in multiple experiments: DELPHI, ALICE, LHCb, ...

Photon Detection

- Rather, detection of photoelectrons:
 - Convert γ to photoelectrons on photocathode
 - Detect those photoelectrons as "charged particles"
 - Measure the position and /or time
- Main options:
 - Gas based detectors: MWPCs, GEMs
 - Vacuum based detectors: PMT HPD
 - Solid state detectors: SiPMs

Making your choices:

Gaseous:

- Pros: can operate in high magnetic field; cheapest option
- Cons: issues related to photon and ion feedback; max resolution in visible wavelength range

Vacuum-based:

- Pros: can operate at high rates (LHC); uniform gains / small noise
- Cons: sensitivity to magnetic field; active area fraction

RICH Options for EIC

Modular RICH (mRICH)

- At EIC: possible option for backward (electron side) direction
- Particle ID at low/mid- momenta: allows pion/Kaon separation up to ~8 GeV; e/pion to ~4
- Design basics:
 - Radiator: aerogel (low density transparent radiator, $n \sim 1.03$)
 - Reflector: Fresnel lens
 - Sensor: 3 mm pixel size, LAPPD

Olga Evdokimov (UIC)

CFNS EIC Summer School

08/08/2021 16

RICH Options for EIC

Dual-radiator RICH (dRICH)

- At EIC: considered implementation for forward (hadron) region
- Design basics:
 - Radiator: n = 1.02 (aerogel), 1.0008 (C2F6)
 - Reflector: Spherical mirrors
 - Sensor: 3mm pixel size, MAPMT

RICH Options for EIC

DIRC

- "Detection of Internally Reflected Cherenkov (light)" internally reflecting imaging Cherenkov detectors
- At EIC: possible option for central region
- Cerenkov light undergoes internal reflection
- With high-resolution timing can achieve π/K separation up to 6 GeV

Olga Evdokimov (UIC)

PID: Matching the EIC Kinematics

• Yellow Report:

DIS electron and SIDIS pion for $18 \ GeV \ e^- \times 275 \ GeV \ p$ beams

Expected Coverage for PID Options

A (Possible) PID solution for EIC

- Backward: mRIHC
 - p/K separation up to ~10 GeV/c
- Barrel: high-performance DIRC, TOF, TPC
 - p/K separation up to ~6-7 GeV/c
- Forward: dRICH
 - p/K separation up to ~50 GeV/c
- Also Forward:
 - TOF ?

Detectors to Physics

Pattern Recognition in (RICH) Cherenkov Detectors

- Events with large number of charged particles \rightarrow overlapping rings
- Hough Transform (ALICE):
 - Project the particle direction on to the detector plane
 - Accumulate the distance of each hit from these projection points (think: rings)
 - Use peaks to associate the corresponding hits to the tracks
- Likelihood Method (LHCb):
 - For each track in the event assume a given mass hypothesis, create photons and project them to the detector plane using the knowledge of detector geometry/properties
 - Calculate the probability for signal seen in each pixel of the detector from all tracks
 - Compare this with the observed set of photoelectron signal by creating a likelihood
 - Repeat all the above after changing the set of mass hypothesis of the tracks
 - Find the set of mass hypothesis, which maximize the likelihood

LHCb: RHIC1 MC study

Detectors to Physics

- Neutrinos via Missing- E_T
- A technique used to reconstruct neutrino without actually seeing a neutrino (Think: charged current events! Also: SM tests, SUSY searches)
- Missing energy is not a good quantity in a collider → some energy from the proton remnants is lost near the beampipe
- Missing transverse energy (E_T^{mis}) much more stable quantity!
- Defined as a measure of the lost energy (as in "not found") due to neutrinos:

$$E_T = -\sum_i E_T^i \hat{n}_i = -\sum_{all \text{ visible}} \vec{E}_T$$

- Reconstructing E_T^{mis} :
 - Particle flow approach in HEP has been shown to perform the best
 - Need all subsystem input: calorimeter cells, clustered; muons, PID data → matched to tracks to reconstruct event on "particle level"
 - Special care is needed to avoid double-counting

PID: Wrapping Up

- The field of Particle Identification Detectors is an evolving field.
- The particle ID using dE/dx, Time-of-Flight, RHIC and Transition Radiation detectors continue to provide reliable particle identification for Nuclear, Particle and Astro- Physics experiments.
- Particle identification is a crucial part for many highimpact measurements at the upcoming EIC

08/08/2021 24

Back Up Slides

Olga Evdokimov (UIC)

CFNS EIC Summer School

08/08/2021 25

At EIC Calorimeters are Everywhere

Calorimeters-101

Radiation length (X_0)

- When the energy has been reduced to 1/e
- Characterizes the shower depth
- Critical Energy (E_c)
 - Energy, where Ionization takes over
- Moliere Radius (r_{Moliere})
 - Radius which contains 90 % of the shower
 - Characterizes the width of the shower
- Shower Max(imum)
 - The peak of the shower

$$X_{0} = \frac{716.4A}{Z(Z+1) \cdot \ln(287/\sqrt{Z})} \cdot \frac{1}{6}$$

$$E_{C, solid/liquid} = \frac{610 MeV}{Z + 1.24}$$
$$E_{C, gas} = \frac{710 MeV}{Z + 0.92}$$

$$r_{Moliere} = 21.2 \, MeV \frac{X_0}{E_C}$$

$$S_{max} = \ln\left(\frac{E_{Incoming}}{E_C}\right)$$

Credit: A. Kiselev

Explosion of Si R&D

- Very active area!
- Example: Low Gain Avalanche Detectors (LGAD)
 - Single layer timing resolution < 20 ps
 - Radiation tolerance: under continuous improvements
- Varieties:
 - AC-LGAD: gain layer charge coupled capacitively to surface through thin (~ 500 nm) oxide layer, segmentation provided simply by surface electrodes
 - Deep Junction (DJ-LGAD)
 - Trench isolated (TI-LGAD)
 - Inverse (iLGAD)...
- Other approaches to fast timing in silicon: 3D, Timepix, Solid-state Electron Multiplier (SSEM),...

Detection Options: SiPM

New advances: Silicon Photomultipliers

- a solid-state photodetector made of an array of hundreds or thousands of integrated single-photon avalanche diodes
 - Time resolution= ~ 100 ps.
 - Works in magnetic field
 - High gains $\sim 10^6$
 - Single photon detection potential
- SIPM for Cherenkov Detectors at EIC:
 - Requires additional R&D but initial tests are promising
 - SiPM can suffer radiation damage
 - High impact potential!

Tracking: Ionization

• Mean ionization energy loss is described by Bethe-Bloch formula

$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

For electron (switching some of the constants and dropping relativistic rise correction):

$$-\frac{dE}{dx} \approx \left(0.307 \frac{MeV \ cm^2}{mol}\right) \rho \left[\frac{Z}{A}\right] \left[\frac{z^2}{\beta^2}\right] \left[ln \frac{2 \ 0.511 MeV \ \gamma^2 \beta^2}{[16 \ \cdot Z^{0.9}]^2} - \beta^2\right]$$

How many electrons does a charged particle produce an average while crossing 100 μm of Si?

Tracking: Ionization

Supplementary information: excitation energy data (a minimum amount of ionization required to produce one charge carrier:

Material	Excitation	Mean excitation energy ε [eV]
Ge (77 K)	Electron-hole	3.0
Si	Electron-hole	3.6
CsI(Tl)	Scintill. y	12
NaI (TI)	Scintill. y	22
Xe	Electron-ion	22
Isobutane	Ionisation	23
Ar	Electron-ion	26
CO ₂	Ionisation	33

Tracking: Ionization

- Let's estimate how many electrons does a charged particle produce an average while crossing 100 μm of Si?
- Let's assume that the charged particle have z = 1 and behave like a MIP. For a MIP, the dependence of dE/dx on particle energy is dominated by logarithmic term $\sim \ln\gamma$. Assuming that the particle is produced near global minimum of $\gamma \sim 4$:

$$-\frac{dE}{dx} \approx \left(0.307 \frac{MeV \ cm^2}{mol}\right) \rho \left[\frac{Z}{A}\right] \left[\frac{z^2}{\beta^2}\right] \left[ln \frac{2 \ 0.511 MeV \ \gamma^2 \beta^2}{[16 \ \cdot Z^{0.9}]^2} - \beta^2\right]$$
$$\approx \left(0.307 \frac{MeV \ cm^2}{mol}\right) \left[\frac{2.33 \ g \ cm^3 \ 14}{28.1 \ g \ mol^{-1}}\right] \left[ln \frac{2 \ 0.511 MeV \ 4^2}{16 \ 14^{0.9} eV} - 1\right] = \frac{3.7 MeV}{cm}$$

Then number of electron (and holes) produced while crossing $d = 100 \mu m$

$$n = \frac{\left\langle \frac{dE}{dx} \right\rangle d}{\varepsilon} = \frac{3.7 MeV \ 10^{-2} cm}{cm \ 3.6 \ eV} \approx 10^4$$

Olga Evdokimov (UIC)

Cherenkov Detectors: FOM

Frank-Tamm theory : Number of photons produced by a particle with charge Z, along a pathlength L :

$$N_{prod} = \left(\frac{\alpha}{hc}\right) Z^2 L \int sin^2(\theta) dE_{ph},$$

where $\frac{\alpha}{hc} = 370 eV^{-1} cm^{-1}, \quad E_{ph} = \frac{hc}{\lambda}$

If the photons are reflected by a mirror with Reflectivity R(Eph), are transmitted through a quartz window of Transmission T(Eph) and then are detected by a photon detector with efficiency $Q(E_{ph})$, then number of photons detected :

$$N_{det} = \left(\frac{\alpha}{hc}\right) Z^2 L (RQT) \int \sin^2(\theta) dE_{ph} = N_0 L \sin^2(\theta_c)$$

assuming $\theta = const = \theta_c$ – mean Cherenkov angle
 N_0 – is figure of merit for Cherenkov detectors

- HERA: the first electron-proton collider (1992-2007)
- Beam Energies: e: 27.5 GeV p: 820 (920) GeV
- EIC: the new frontier for nuclear science
- Beam Energies: *e*: 5(20) *GeV p*: 50 (250) *GeV*

How do the two facilities compare in terms of kinematic reach?

Olga Evdokimov (UIC)

Kinematics: Electron Scattering

 $\begin{array}{ll} q^2 = -Q^2 = (k - k') & - \text{momentum transfer; virtuality} \\ \nu = E_e - E'_e & - \text{energy lost by lepton} \\ s = (p + k)^2 & y = \frac{\nu}{E_e} & Q^2 = s \cdot x \cdot y \end{array}$

Olga Evdokimov (UIC)

Kinematics: EIC vs. HERA

- Center of Mass Energy: $\sqrt{s} \approx \sqrt{4E_e E_p}$
 - HERA: 300 320 GeV
 - EIC: 32 141 GeV
- Resolution: $Q^2 = sxy \rightarrow Q^2_{max} = s_{max}$
 - HERA: 101,200 GeV²
 - EIC: 20,000 GeV²
- x-reach: $Q^2 = sxy \rightarrow x_{min} \approx \frac{(Q^2_{min} \sim 0.1)}{s_{max}(y_{max} \sim 1)}$
 - HERA: $x_{min} \approx 10^{-7}$
 - EIC: $x_{min} \approx 0.5 \cdot 10^{-6}$

Main differences are NOT in kinematic coverage! EIC will add:

- Better lepton polarization
- Target polarization
- Heavy targets (ions)