Small-x physics at EIC, a few simple exercises

Tuomas Lappi
tuomas.v.v.lappi@jyu.fi

Aug 2021

CFNS Summer School on the Physics of the Electron-Ion Collider, Stony Brook-on-the-web

1. Calculate

$$
\int_{-\infty}^{\infty} \mathrm{d} k \frac{e^{i k x}}{k^{2}+m^{2}}
$$

This can be done the easy way using the theorem of residues; there is probably also a hard way without it.
Then calculate the two dimensional transform needed in the virtual photon-dipole wave function

$$
\int \mathrm{d}^{2} \mathbf{k}_{T} \frac{e^{i \mathbf{k}_{T} \cdot \mathbf{r}_{T}}}{\mathbf{k}_{T}^{2}+m^{2}}
$$

and compare. One way to do this is to integrate over the angle first, which leaves you with the Bessel $J_{0}\left(\left|\mathbf{k}_{T}\right|\left|\mathbf{r}_{T}\right|\right)=J_{0}(k r)$. The integral over k then gives a modified Bessel K_{0}. Mathematica will do the k-integral for you. A more generalizable way is to use a Schwinger parametrization for the propagator

$$
\frac{1}{k^{2}+m^{2}}=\int_{0}^{\infty} \mathrm{d} t e^{-t\left(k^{2}+m^{2}\right)}
$$

then do the (Gaussian) Fourier-transform and identify the integral representation

$$
\int \frac{\mathrm{d} t}{t} e^{-t A} e^{-B / t}=2 K_{0}(2 \sqrt{A B})
$$

When you are calculating the virtual photon-to-dipole wave function, what is m ? What is the asymptotic behavior for $m r \gg 1$? Compare the asymptotic behavior to the 1dimensional case. What does this tell you about the size of the dipole in a DIS event?
2. (Kovchegov \& Levin, exercise 5.1) The gluon field radiated from a fast-moving quark can be written using usual covariant theory Feynman rules as

$$
\begin{equation*}
A_{\mu}^{a}(k)=-i g t^{a} \frac{-i g_{\mu \nu}}{k^{2}+i \varepsilon} \bar{u}_{\sigma}(p-k) \gamma^{\nu} u_{\sigma}(p)(2 \pi) \delta\left((p-k)^{2}\right) \tag{1}
\end{equation*}
$$

The incoming quark is on shell, with $p^{\mu}=\left(p^{+}, 0, \mathbf{0}_{T}\right)$.
(a) The eikonal vertex: assuming $p^{+} \approx(p-k)^{+} \gg k^{+}$show or convince yourself (e.g. using the Gordon decomposition) that the leading high energy behavior is

$$
\begin{equation*}
\bar{u}_{\sigma^{\prime}}(p-k) \gamma^{\nu} u_{\sigma}(p) \approx 2 p^{+} \delta^{\nu+} \delta_{\sigma \sigma^{\prime}} \tag{2}
\end{equation*}
$$

(b) Then Fourier-transform

$$
\begin{equation*}
A_{\mu}^{a}(x)=\int \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}} e^{-i k \cdot x} A_{\mu}^{a}(k) \tag{3}
\end{equation*}
$$

to get the field in coordinate space

$$
\begin{equation*}
A_{\mathrm{COv}}^{+a}=\frac{g}{\pi} t^{a} \delta\left(x^{-}\right) \ln \frac{1}{\left|\mathbf{x}_{T}\right| \Lambda} \tag{4}
\end{equation*}
$$

You may use the result

$$
\begin{equation*}
\int \frac{\mathrm{d}^{2} \mathbf{k}_{T}}{(2 \pi)^{2}} \frac{e^{-i k \cdot x}}{\mathbf{k}_{T}^{2}}=\frac{1}{2 \pi} \ln \frac{1}{\left|\mathbf{x}_{T}\right| \Lambda} . \tag{5}
\end{equation*}
$$

Here Λ is some IR cutoff that you need to introduce to make sense of the logarithmically divergent integral; the UV $\left(k_{T} \rightarrow \infty\right)$ is finite because of the oscillatory factor in the Fourier transform
(c) In Light Cone Gauge, one introduces an axial gauge fixing four-vector n^{μ}, with $n^{2}=0$. The LC gauge for a right-moving nucleus has $n^{-}=1, n^{+}=\mathbf{n}_{T}=0$. One then replaces the Feynman propagator as:

$$
\begin{equation*}
g_{\mu \nu} \rightarrow g_{\mu \nu}-\frac{k_{\mu} n_{\nu}+k_{\nu} n_{\mu}}{k \cdot n} \tag{6}
\end{equation*}
$$

Calculate now the coordinate space color field $A_{\mathrm{LC}}^{\mu}(x)$ with the same approximations
3. (Kovchegov \& Levin, 4.5 b) Solve the BK equation in zero transverse dimensions:

$$
\begin{equation*}
\partial_{y} N=\alpha_{\mathrm{s}} N-\alpha_{\mathrm{s}} N^{2}, \quad N(y=0)=N_{0} \ll 1 \tag{7}
\end{equation*}
$$

