DIS in dipole picture

Gluon saturation & CGC 000000000 VicLerran-Venugopalan model 00000000 BK equation 000000000000000

Small-x physics

Tuomas Lappi tuomas.v.v.lappi@jyu.fi

University of Jyväskylä

CFNS Summer School on the Physics of the Electron-Ion Collider, Stony Brook-on-the-web

McLerran-Venugopalan model 00000000 3K equation 000000000000000

Outline

- Lecture 1 (Wed): DIS in dipole picture
- Lecture 2 (Wed): Gluon saturation, CGC
- Lecture 3 (Thu): MV model
- Lecture 4 (Thu): BK equation
- Tutorial: (Thu): Discuss a few calculations that come up during lectures.
- Schedule goal: finish lecture material early on Thu to discuss tutorial problems

Exercise questions as separate sheet in indico

Ideology

- Not infinitely many slides: intended as lectures, not a talk!
- Some calculations on the way
- Interrupt and ask!

Literature

Very good books, basis of these lectures

- Y. V. Kovchegov and E. Levin, "Quantum chromodynamics at high energy," Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 33 (2012).
- V. Barone and E. Predazzi, "High-Energy Particle Diffraction," Springer 2002

Reviews:

- E. lancu and R. Venugopalan, "The Color glass condensate and high-energy scattering in QCD," In "Hwa, R.C. (ed.) et al.: Quark gluon plasma" 249-3363 [hep-ph/0303204]
- F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, "The Color Glass Condensate," Ann. Rev. Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333 [hep-ph]]
- H. Weigert, "Evolution at small x(bj): The Color glass condensate," Prog. Part. Nucl. Phys. 55 (2005) 461 [hep-ph/0501087]
- J. Jalilian-Marian and Y. V. Kovchegov, "Saturation physics and deuteron-Gold collisions at RHIC," Prog. Part. Nucl. Phys. 56 (2006) 104 [hep-ph/0505052]
- F. Gelis, T. Lappi and R. Venugopalan, "High energy scattering in Quantum Chromodynamics," Int. J. Mod. Phys. E 16 (2007) 2595 [arXiv:0708.0047 [hep-ph]]

McLerran-Venugopalan model 00000000 3K equation 000000000000000

1 DIS in dipole picture

High energy Deep Inelastic Scattering Dipole picture Light Cone Perturbation Theory and γ^* light cone wave function

- 2 Gluon saturation & CGC Eikonal scattering, Wilson line Target gluon field in 2 gauges
- McLerran-Venugopalan model
 MV model: motivation
 MV model: calculating Wilson line operators
- 4 BK equation Soft gluon radiation The Balitsky-Kovchegov equation: a short derivation

1 DIS in the dipole picture

McLerran-Venugopalan model

BK equation 00000000000000

DIS kinematics

Topic of these lectures: high energy limit $x \to 0$

- ▶ This is when $W^2 \to \infty$; $\nu \to \infty$; i.e. the virtual photon-target c.m.s. energy is high.
- Now Q^2 is "fixed". (DGLAP limit is x fixed, Q^2 large)
- Useful to think of W as longitudinal momentum, Q as transverse

DIS in dipole picture

Gluon saturation & CGC 000000000 McLerran-Venugopalan model

BK equation 00000000000000

Infinite momentum frame IMF

Assume photon hits quark carrying fraction α of target momentum. On-shell outgoing quark:

$$0 = (q + \alpha P) = -Q^{2} + 2\alpha P \cdot q + \alpha^{2} m_{N}^{2}$$
$$\implies \alpha = \frac{Q^{2}}{2P \cdot q} = x$$

x = momentum fraction

Identify kinematical variable x (measured from electron) with momentum fraction in IMF, @LO (In rest frame $k = \alpha P$ not good approx)

McLerran-Venugopalan model

BK equation 00000000000000

Cross sections vs. energy

I want to convince you that the γ^* is the theorist's favorite hadron!

 γ scattering behaves just like *p* scattering apart from extra $\frac{1}{137}$

Same should be true for γ^{*}

McLerran-Venugopalan model

BK equation 000000000000000

Target Rest Frame TRF kinematics

Light cone coordinates $x^{\pm} = \frac{1}{\sqrt{2}}(t \pm z)$ (Notes: boldface \mathbf{x}_{\perp} is 2d transverse, photon right-moving)

Target
$$P^{\mu} = (\overset{0}{m}, \overset{1}{\mathbf{0}}, \overset{z}{\mathbf{0}}) \implies (\overset{+}{m}/\sqrt{2}, \overset{-}{m}/\sqrt{2}, \overset{1}{\mathbf{0}})$$

Photon $q^{\mu} = (\overset{0}{\nu}, \overset{1}{\mathbf{0}}, \sqrt{\nu^{2} + Q^{2}}) \implies (\overset{+}{q^{+}}, -Q^{2}/(2q^{+}), \overset{1}{\mathbf{0}})$

^{X⁺}High energy: $q^+ \approx \sqrt{2}\nu$ big Look at γ^* wavefunction $e^{-i(q^+x^-+q^-x^+)}$

- Very accurate resolution in x^-
- No resolution in x⁺
 Scattering instantaneous in x⁺
 compared to natural timescale of γ*

In particular γ^* cannot change into a hadronic final state **inside** proton; it has to fluctuate into hadrons before.

Physical picture in IMF vs TRF

- ► Standard parton model: γ^* takes "picture" of target partons instantaneously in x^- (If you think this way you switch $z \rightarrow -z$)
- Here: color field of target takes "picture" of partons in γ* instantaneously in x⁺.
- ► Kinematics: fluctuations in γ^* long-lived in x^+ $\implies \gamma^*$ fluctuates into partons before collision. Partons interact with gluon **shockwave** (~ $\delta(x^+)$)

Cross section is Lorentz-invariant

- physical picture is very frame-dependent!

Dipole picture of DIS

Simplest hadronic state in the interacting γ^* : quark-antiquark dipole.

$$\sigma_{T,L}^{\gamma^*} = \int d^2 \mathbf{r}_{\perp} dz \left| \psi^{\gamma^* \to q\bar{q}} (\mathbf{r}_{\perp}, z)_{T,L} \right|^2 2 \text{Im}\mathcal{A}$$

High energy: we assume (lifetime/timescale) factorization between

- $\left|\psi^{\gamma^* \to q\bar{q}}(\mathbf{r}_{\perp}, z)_{T,L}\right|^2$: probability for photon to fluctuate into $\bar{q}q$
- 2ImA imaginary part of the forward elastic scattering amplitude, i.e. the total cross section; optical theorem

McLerran-Venugopalan model 00000000 BK equation 000000000000000

Remarks: same process in IMF

In usual parton model picture one would draw same diagram as:

- Looks like formally higher order (NLO DIS)
- Does not describe valence quarks

This is however the leading contribution at small-x

- The valence quark distribution is small
- ► DGLAP sea quarks come from gluons: $xq(x, Q^2) \sim \alpha_s \ln Q^2 xg(x, Q^2)$ ⇒ power counting depends on $\alpha_s \ln Q^2 \sim 1$ vs $\alpha_s \ln Q^2 \sim \alpha_s$
- Same diagram can be read as both
 - ▶ $\gamma^* + g \rightarrow q + \bar{q}$: a NLO DIS process $\sim \alpha_{s}$
 - ▶ 1 DGLAP split $g
 ightarrow q + ar{q}$, $\sim lpha_{ extsf{s}}$ + LO DIS process $\gamma^* + q
 ightarrow q$
- At NLO split btw quark and gluon distributions scheme dependent
- ► Matching dipole picture to collinear xg(x, Q²) and xq(x, Q²) only done at leading log (where only xg(x, Q²) matters).

Quantizing the photon: LCPT

- Recall: want to understand the partonic content of the photon
- Unlike proton, γ^* is a perturbative object: calculable
- The theoretical tool of choice is Light Cone Perturbation Theory
- What is Light Cone Perturbation Theory (LCPT)?
 - ► Heisenberg quantization: time-dependent operators $\hat{A}(t)$, equal-time commutation relations $[\hat{A}(t), \hat{B}(t)]$ known.
 - Then solve equation of motion $\partial_t \hat{A}(t) = -i[\hat{A}(t), \hat{H}(t)]$
 - LCPT: choose the "time" variable to be light-like: x^+

Advantages and disadvantages

- + Only physical degrees of freedom \implies partonic interpretation
- + Maximal number of commuting Lorentz generators
- + Longitudinal boosts are easy \implies high energy
- 3d rotational invariance is hard
- Connection to lattice, hadron rest frame difficult

Idea of LCPT calculation

- Know free particle Fock states: $|\gamma^*\rangle_0$, $|q\bar{q}\rangle_0$, $|q\bar{q}g\rangle_0$ etc.
- Interacting states are superpositions of these:

 $|\gamma^*\rangle = (1+\dots)|\gamma^*\rangle_0 + \psi^{\gamma^* \to q\bar{q}} \otimes |q\bar{q}\rangle_0 + \psi^{\gamma^* \to q\bar{q}g} \otimes |q\bar{q}g\rangle_0 + \dots$

 Calculate in QM perturbation theory, e.g. ground state |0> wavefunction:

$$\psi^{0\to n} = \sum_{n} \frac{\langle n | \hat{V} | 0 \rangle}{E_n - E_0} + \dots$$

• Here $1/\Delta E$ is ~ the lifetime of the quantum fluctuation from 0 to n

- "Energy" E is conjugate to "time", LC time is $x^+ \implies$ LC energy k^-
- ▶ Note: energy not "conserved," only 3-momentum $\vec{k} = (k^+, \mathbf{k}_\perp)$ is
- Connection to Feynman perturbation theory
 - Matrix elements $\langle n | \hat{V} | m \rangle$ are vertices in Feynman rules
 - LC energy denominators from propagators, integrating over k⁻ with pole

McLerran-Venugopalan model

BK equation 000000000000000

Let's calculate $\psi^{\gamma^* \to q\bar{q}}$

Steps for calculating light cone wave function:

- Color factor $\delta_{\alpha\beta}$ and electric charge ee_f
- Energy denominator $k_0^- k_1^-$
- Matrix element $\bar{u} \notin v_{h'}$
- Fourier transform to transverse coordinate space (Why coordinate space? Eikonal scattering, will come back to this in next lecture)

McLerran-Venugopalan model

3K equation 000000000000000

Let's calculate $\psi^{\gamma^* \to q\bar{q}}$

Steps for calculating light cone wave function:

- Color factor $\delta_{\alpha\beta}$ and electric charge ee_f
- Energy denominator $k_0^- k_1^-$
- Matrix element $\bar{u} \notin v_{h'}$
- Fourier transform to transverse coordinate space (Why coordinate space? Eikonal scattering, will come back to this in next lecture)

McLerran-Venugopalan model

3K equation 000000000000000

Let's calculate $\psi^{\gamma^* \to q\bar{q}}$

Steps for calculating light cone wave function:

- Color factor $\delta_{\alpha\beta}$ and electric charge ee_f
- Energy denominator $k_0^- k_1^-$
- Matrix element $\bar{u} \notin v_{h'}$
- Fourier transform to transverse coordinate space (Why coordinate space? Eikonal scattering, will come back to this in next lecture)

McLerran-Venugopalan model 00000000 BK equation 000000000000000

Matrix element

Matrix element
$$\bar{u}_{h}(p) \notin_{\lambda,T/L}(q) v_{h'}(p')$$
 with

$$\mathbf{p}_{\perp}, h; p^{+} = zq^{+}$$

$$\mathbf{k}_{\perp} \equiv \mathbf{p}_{\perp} - z\mathbf{q}_{\perp}$$

$$\mathbf{p}'_{\perp}, h'; p'^{+} = (1 - z)q^{+}$$

$$h, h' = \pm \frac{1}{2}; \quad \lambda = 0 = L, \quad \lambda = \pm 1 = T$$

► Transv. polarization vector (LC gauge $\varepsilon^+ = 0$!!) $\varepsilon^{\mu}_{\lambda=\pm}(q) = (0, \frac{\mathbf{q}_{\perp} \cdot \boldsymbol{\varepsilon}_{\perp\lambda}}{q^+}, \boldsymbol{\varepsilon}_{\perp\lambda}) \xrightarrow{\mathbf{q}_{\perp}=\mathbf{0}} (0, 0, \boldsymbol{\varepsilon}_{\perp\lambda}),$

C

- Circularly polarized 2d polarization vectors $\varepsilon_{\perp\pm} = \frac{1}{\sqrt{2}} \begin{pmatrix} \mp I \\ -i \end{pmatrix}$
- ► Longit. polarization effectively $\varepsilon_{\lambda=0}^{\mu}(q) = (0, \frac{\sqrt{Q^2 - \mathbf{q}_{\perp}^2}}{q^+}, \frac{\mathbf{q}_{\perp}}{\sqrt{Q^2 - \mathbf{q}_{\perp}^2}}) \xrightarrow{\mathbf{q}_{\perp} = \mathbf{0}} (0, \frac{Q}{q^+}, \mathbf{0}),$
- Using tables for matrix elements

$$\bar{u} \notin v = \frac{2\delta_{h,-h'}}{\sqrt{z(1-z)}} \left(z\delta_{\lambda,2h} - (1-z)\delta_{\lambda,-2h} \right) \boldsymbol{\varepsilon}_{\perp\lambda} \cdot \mathbf{k}_{\perp} + \delta_{h,h'}\delta_{\lambda,2s} \frac{\sqrt{2}m}{\sqrt{z(1-z)}}$$

Remarks:

- Only relative center-of-mass momentum $\mathbf{k}_{\perp} = \mathbf{p}_{\perp} z\mathbf{q}_{\perp}$
- Quark helicity conserving $\sim \mathbf{k}_{\perp}$ + helicity-flip $\sim m$

McLerran-Venugopalan model

BK equation 000000000000000

Energy denominator

$$\mathbf{q}_{\perp}, q^{+} \qquad \qquad \mathbf{p}_{\perp}, \ p^{+} = zq^{+}$$
$$\mathbf{k}_{\perp} \equiv \mathbf{p}_{\perp} - z\mathbf{q}_{\perp}$$
$$\mathbf{p}_{\perp}' = \mathbf{q}_{\perp} - \mathbf{p}_{\perp}, \ p'^{+} = (1 - z)q^{+}$$

Energy denominator $(q^- - k^- - k'^-)^{-1}$ (On-shell momenta!)

$$q^{-} - p^{-} - p'^{-} = -\left(\underbrace{\frac{Q^{2}}{2q^{+}}}_{q^{+}} + \underbrace{\frac{p^{-}}{2zq^{+}}}_{2zq^{+}} + \underbrace{\frac{p^{-}}{2(1-z)^{2} + m^{2}}}_{2(1-z)q^{+}}\right)$$
$$\frac{1}{q^{-} - p^{-} - p'^{-}} = \underbrace{\frac{-2q^{+}z(1-z)}{Q^{2}z(1-z) + m^{2}}}_{=\overline{Q^{2}}} + \mathbf{k}_{\perp}^{2}.$$

• Also only relative center-of-mass momentum $\mathbf{k}_{\perp} = \mathbf{p}_{\perp} - z\mathbf{q}_{\perp}$

BK equation

Fourier transform

Scattering at high energy is **eikonal**: transverse **position** of parton does not change \implies Fourier-transform $\mathbf{k}_{\perp} \rightarrow \mathbf{r}_{\perp}$

$$\mathbf{q}_{\perp} \rightarrow \mathbf{0}$$

L:
$$\int d^2 \mathbf{k}_{\perp} e^{i\mathbf{k}_{\perp} \cdot \mathbf{r}_{\perp}} \frac{1}{\mathbf{k}_{\perp}^2 + \bar{Q}^2} \sim K_0(r\bar{Q}) \quad \text{exercise}$$

T:
$$\int d^2 \mathbf{k}_{\perp} e^{i\mathbf{k}_{\perp} \cdot \mathbf{r}_{\perp}} \frac{k^i}{\mathbf{k}_{\perp}^2 + \bar{Q}^2} \sim \frac{r^i}{r} K_1(r\bar{Q})$$

• Recall $\bar{Q}^2 \equiv z(1-z)Q^2 + m^2$.

• Note asymptotics $K_{0,1}(x) \sim e^{-x} \implies$ enforces $r \sim 1/Q$.

McLerran-Venugopalan model 00000000 3K equation 000000000000000

DIS dipole frame: summary

- Picture DIS as γ^* scattering on target
- At high energy (in TRF) γ^* fluctuates into $q\bar{q}$

$$\sigma_{T,L}^{\gamma^* p} = \int d^2 \mathbf{r}_{\perp} dz \left| \psi^{\gamma^* \to q\bar{q}}(\mathbf{r}, z)_{T,L} \right|^2 2 \text{Im}\mathcal{A}$$

$$\begin{aligned} \left|\psi_{T}^{\gamma^{*} \to q\bar{q}}\right|^{2} &= \frac{\alpha_{\text{e.m.}}}{2\pi^{2}} N_{\text{c}} \boldsymbol{e}_{f} \left(\left[z^{2} + (1-z)^{2}\right] K_{1}^{2}(\varepsilon r) + m_{f}^{2} K_{0}^{2}(\varepsilon r)\right) \\ \left|\psi_{L}^{\gamma^{*} \to q\bar{q}}\right|^{2} &= \frac{\alpha_{\text{e.m.}}}{2\pi^{2}} N_{\text{c}} \boldsymbol{e}_{f} 4 Q^{2} z^{2} (1-z)^{2} K_{0}^{2}(\varepsilon r) \end{aligned}$$

- Typical dipole size: $r \sim 1/Q$
- Used optical theorem: 2ImA is total cross section
 - can also take $|A|^2$: elastic scattering (diffractive DIS)
- We are assuming that fixed-size dipoles are the basis that diagonalizes the imaginary part of the T-matrix
 - This makes sense in an eikonal approximation for the scattering
 - In general: high energy/eikonal approximation: particles fly through target at fixed x_⊥; does not imply zero momentum transfer!

2 Gluon saturation and the CGC

CGC basics

- Until now: $\gamma^* \rightarrow q\bar{q}$. But what is the target?
- CGC separation of scales:
 - small x: classical field
 - large x: color charge
- 2 topics for this lecture
 - 1. A high energy particle scatters off a color field: Wilson line
 - 2. What does the color field look like in spacetime?

Next lecture: a concrete calculable model: the McLerran-Venugopalan model

What is the target made of?

- So far we have not specified anything about the degrees of freedom in the target.
- At high energy the target consists dominantly of gluons
 - Experimentally: small x gluon distribution is larger than the quark one.
 - High \sqrt{s} : QCD radiation builds up the target by adding gluons to it.

Color Glass Condensate (CGC)

We assume that there are so many gluons in the target, that it can be described by a classical gluon field. This is the heart of the CGC effective theory.

Many gluons = large color field A_{μ} Sum all diagrams with *n* gluon lines — but we can assume gluons are a classical field

McLerran-Venugopalan model

BK equation 00000000000000

Scattering off CGC target

Quark propagating in classical color field: Dirac equation!

$$(i\partial - gA)\psi(x) = 0$$

(Note: $A = A^{\mu}_{a} \gamma_{\mu} t^{a}$ is $N_{c} \times N_{c}$ -matrix)

Want to dig out the dominant contribution: eikonal approximation

- Gluon is spin 1: it couples to a vector: $\sim p^{\mu}A_{\mu}$
- \blacktriangleright For high energy particle the only vector available is p^{μ}
- p^{μ} has one large component: $p^+ \implies p^{\mu}A_{\mu} \sim p^+A^-$

Ansatz for DE: $\psi(x) = V(x)e^{-ip \cdot x}u(p)$, plug in eq.

 \implies only need $A^ N_c \times N_c$ -matrix!

$$\implies \partial_+ V(x^+, x^-, \mathbf{x}_\perp) = -igA^-(x^+, x^-, \mathbf{x}_\perp) \bigvee (x^+, x^-, \mathbf{x}_\perp)$$

This is solved by path-ordered exponential

$$V(x^+, x^-, \mathbf{x}_\perp) = \mathbb{P} \exp\left\{-ig \int^{x^+} \mathrm{d}y^+ A^-(y^+, x^-, \mathbf{x}_\perp)\right\}$$

Eikonal propagation

- ▶ Now know how high energy quark propagates in a classical field.
- Thus know the scattering S-matrix for many-quark states
- E.g. incoming free quark $|q_i(\mathbf{x}_{\perp})\rangle$ at $x^+ \to -\infty$ is, at $x^+ \to \infty$

$$|q_i(\mathbf{x}_{\perp})\rangle_{in} = \left[\mathbb{P}\exp\left\{-ig\int_{-\infty}^{\infty} \mathrm{d}y^+ A^-(y^+,x^-,\mathbf{x}_{\perp})
ight\}
ight]_{ji} |q_j(\mathbf{x}_{\perp})\rangle_{\mathrm{out}}$$

a linear superposition of color rotated outgoing quarks.

- ▶ In scattering problem integrate $x^+ \in [-\infty, \infty]$
- ► In the high energy limit quark wavefunction oscillates like $e^{ip^+x^-}$ with large $p^+ \implies x^-$ -dependence negligible compared to this \implies approximate $x^- = 0$

Scattering described by 2-d field of $SU(N_c)$ -matrices

$$V(\mathbf{x}_{\perp}) \equiv \mathbb{P} \exp\left\{-ig\int_{-\infty}^{\infty} \mathrm{d}x^{+}A^{-}(x^{+},x^{-}=0,\mathbf{x}_{\perp})
ight\}$$

- These is known as the **Wilson lines**

McLerran-Venugopalan model

BK equation 000000000000000

Dipole amplitude and Wilson lines

Incoming dipole becomes

(color neutral, average over colors! ; $V(\mathbf{y}_{\perp})^{\dagger}_{jk} = V(\mathbf{y}_{\perp})^{*}_{kj}$ for antiquark)

$$|\text{in}\rangle = \frac{\delta_{ii'}}{N_c} |q_i(\mathbf{x}_{\perp})\bar{q}_{i'}(\mathbf{y}_{\perp})\rangle_{\text{in}} = \frac{\delta_{ii'}}{N_c} V_{ji}(\mathbf{x}_{\perp}) V_{i'j'}^{\dagger}(\mathbf{y}_{\perp}) |q(\mathbf{x}_{\perp})_j\bar{q}(\mathbf{y}_{\perp})_{j'}\rangle_{\text{out}}$$

Total cross section: imaginary part of **forward elastic scattering amplitude**; i.e. count outgoing dipoles in this state

$$S = {}_{\text{out}} \langle q_k(\mathbf{x}_{\perp}) \bar{q}_k(\mathbf{y}_{\perp}) | \text{ in} \rangle = \frac{\delta_{ij'}}{N_c} \delta_{kj} \delta_{kj'} V_{ji}(\mathbf{x}_{\perp}) V_{i'j'}^{\dagger}(\mathbf{y}_{\perp}) = \frac{1}{N_c} \text{ Tr } V(\mathbf{x}_{\perp}) V^{\dagger}(\mathbf{y}_{\perp})$$

Dipole amplitude in the CGC

Relate DIS amplitude \mathcal{N} to a microscopical description of the target:

$$\mathcal{N}_{q\bar{q}} = 1 - rac{1}{N_{
m c}} \operatorname{Tr} V(\mathbf{x}_{\perp}) V^{\dagger}(\mathbf{y}_{\perp})$$

Note conventions

$$S_{fi} = \langle f | \hat{S} | f \rangle = 1 + iT_{fi}$$
 $\sigma_{tot} = 2 \text{Im}T_{ii}$ $\mathcal{N} \equiv \text{Im}T_{ii}$ $S_{ii} = \delta_{ii} - \mathcal{N} + \text{imag}$

McLerran-Venugopalan model

BK equation 000000000000000

Saturation of the dipole cross section

Basic features following from

$$\mathcal{N}_{q\bar{q}} = 1 - \frac{1}{N_{\rm c}} \operatorname{Tr} V(\mathbf{x}_{\perp}) V^{\dagger}(\mathbf{y}_{\perp})$$

- Small dipoles:
 - At $\mathbf{x}_{\perp} = \mathbf{y}_{\perp}$: $V(\mathbf{x}_{\perp})V^{\dagger}(\mathbf{y}_{\perp}) = \mathbb{1}$.
 - At r = 0 color neutral system, should not scatter by the strong interaction!
 - $\mathcal{N}_{q\bar{q}}(r) \sim r^2 \implies$ perturbative limit
- Large dipoles
 - Fully uncorrelated Wilson lines:
 - $\langle \operatorname{Tr} V(\mathbf{x}_{\perp}) V^{\dagger}(\mathbf{y}_{\perp}) \rangle = 0$
 - Large dipoles $r \gtrsim 1/Q_{\rm s}$ scatter with $\mathcal{N}_{q\bar{q}} \lesssim 1$

► Know that $N_{q\bar{q}}$ grows at $x \to 0 \implies$ turnover from $N \ll 1$ to $N \sim 1$ happens at smaller $r \sim R_s$ when $\sqrt{s} \to 0$

Nonperturbative weak coupling unitarization = Saturation

Saturation scale $Q_s = 1/R_s$ = inverse distance for turnover

Classical field and equation of motion

- ► We were describing the high energy nucleus as a classical field: A⁻ ⇒ Wilson line
- What does this imply for the partonic content of the nucleus?
- The physical picture of "gluons as partons" requires two things
 - Infinite momentum frame: nucleus moving fast
 Change direction: nucleus moves now in +z-direction with large p⁺.
 Means we have large A⁺ component.
 - Light cone gauge: have to gauge transform to $A^+ = 0$
- But let us start with the "classical" part.

Classical field \equiv from equation of motion

$$[D_{\mu}, F^{\mu\nu}] = J^{\mu}$$

What remains is

$$\boldsymbol{\nabla}_{\perp}^2 \boldsymbol{A}^+ = J^+$$

This is nice, the big +-field corresponds to a **color** current in the +-direction.

McLerran-Venugopalan model 00000000

glass!

BK equation 000000000000000

Spacetime structure of the field: covariant gauge

I Current lives on the light cone.

- 1. Naive explanation: Nucleus is Lorentz-contracted to $\Delta z \sim 2R_A m_A/\sqrt{s}$
- 2. Real explanation: Current represents large x degrees of freedom
 - Current: large p^+ , field small p^+
 - Current more localised in x⁻ than field.

II Current independent of LC time x^+ ;

Argument is as above:

- 1. Time is dilated for the nucleus
- Any probe will have larger k[−] than color current ⇒ probe will oscillate faster in x⁺ and see current as static.

Extreme approximation:

$$\begin{aligned} j^+(x^-, \mathbf{x}_\perp) &\approx \quad \delta(x^-)\rho(\mathbf{x}_\perp) \\ A^+(x^-, \mathbf{x}_\perp) &\approx \quad \delta(x^-) \frac{1}{\boldsymbol{\nabla}_\perp^2} \rho(\mathbf{x}_\perp) \end{aligned}$$

McLerran-Venugopalan model 00000000 BK equation 000000000000000

Spacetime picture in LC gauge

Recall: partonic interpretation needs LC gauge — Gauge transform:

$$\begin{aligned} A^{+} &\Rightarrow V^{\dagger}(\mathbf{x}_{\perp}, x^{-})A^{+}U(\mathbf{x}_{\perp}, x^{-}) - \frac{i}{g}V^{\dagger}(\mathbf{x}_{\perp}, x^{-})\partial_{-}V(\mathbf{x}_{\perp}, x^{-}) = 0\\ A^{-} &\Rightarrow -\frac{i}{g}V^{\dagger}(\mathbf{x}_{\perp}, x^{-})\partial_{+}V(\mathbf{x}_{\perp}, x^{-}) = 0, \text{ still}\\ A^{i} &\Rightarrow \frac{i}{g}V^{\dagger}(\mathbf{x}_{\perp}, x^{-})\partial_{i}V(\mathbf{x}_{\perp}, x^{-}) \text{ transverse pure gauge} \end{aligned}$$

This is solved by familiar Wilson line

$$V(\mathbf{x}_{\perp}, x^{-}) = \mathbb{P} \exp \left[-ig \int^{x^{-}} dy^{-} A^{+}\right]$$

Since $A_{cov}^+ \sim \delta(x^-)$, the integral $A_{LC}^i \sim \theta(x^-)$ — delocalized in x^- , just like small k^+ physical gluons should be.

BK equation 000000000000000

Weizsäcker-Williams gluon distribution

In LC quantization (Now of nucleus, not γ^*) number distribution of gluons:

$$\frac{\mathrm{d}N}{\mathrm{d}^{2}\mathbf{k}_{\perp}\,\mathrm{d}y}\sim\left\langle A_{\alpha}^{i}(\mathbf{k}_{\perp})A_{\alpha}^{i}(-\mathbf{k}_{\perp})\right\rangle$$

- $A^i_{\alpha}(\mathbf{k}_{\perp})$ is obtained from the Wilson line
- Wilson line is related to DIS dipole cross section, BK equation
- One can express this Weizsäcker-Williams gluon distribution as:

$$\frac{\mathrm{d}N}{\mathrm{d}^{2}\mathbf{k}_{\perp}\,\mathrm{d}y} = \varphi^{\mathrm{WW}}(\mathbf{k}_{\perp}) = \frac{C_{\mathrm{F}}}{2\pi^{3}}\frac{1}{\alpha_{\mathrm{s}}}\int\,\mathrm{d}^{2}\mathbf{b}_{\perp}\int\,\mathrm{d}^{2}\mathbf{r}_{\perp}\frac{e^{i\mathbf{k}_{\perp}\cdot\mathbf{r}_{\perp}}}{\mathbf{r}_{\perp}^{2}}\widetilde{\mathcal{N}}(\mathbf{b}_{\perp},\mathbf{r}_{\perp})$$

($\widetilde{\mathcal{N}}$ is the adjoint representation Wilson line dipole correlator)

- Gluon saturation in $\varphi^{WW}(\mathbf{k}_{\perp})$ at $\mathbf{k}_{\perp} \lesssim Q_{s}$
- $\varphi^{WW}(\mathbf{k}_{\perp}) \sim 1/\alpha_{s} \implies$ gluon "condensate"

Now we have a Color Glass Condensate.

Exercise 2

(Kovchegov & Levin, exercise 5.1)

Let's calculate the gluon field of a high-energy quark as a function of spacetime from Feyman rules.

$$\mathcal{A}^{\sigma}_{\mu}(k) = -igt^{\sigma}rac{-ig_{\mu
u}}{k^2+iarepsilon}ar{u}_{\sigma}(arphi-k)\gamma^{
u}u_{\sigma}(arphi)(2\pi)\delta((arphi-k)^2)$$

3 McLerran-Venugopalan model

McLerran-Venugopalan model

Basic idea:

- Want explicit model for color charges, easy to calculate things
- Based on simple physical argument: independent, uncorrelated color charges (CLT: Gaussian)
- Single phenomenological parameter: color charge density μ^2

MV model charge density $\rho(\mathbf{x}_{\perp})$

- stochastic, Gaussian random variable
- ▶ local in x^- and \mathbf{x}_{\perp} (nucleus still moving in + direction)

$$\left\langle
ho^{a}(\mathbf{x}_{\perp}, x^{-})
ho^{b}(\mathbf{y}_{\perp}, y^{-})
ight
angle = g^{2}\delta^{ab}\mu^{2}(x^{-})\delta(x^{-}-y^{-})\delta^{(2)}(\mathbf{x}_{\perp}-\mathbf{y}_{\perp})$$

(Although $\rho^{\alpha}(\mathbf{x}_{\perp}, x^{-}) \sim \delta(x^{-})$, we need to spread the delta function out a bit to make sense of the path ordering.)

(My conventions: μ charge carrier number density, $g\mu$ charge density ~ field A_{μ} , thus what appears in exponent of Wilson line is ~ $gA_{\mu} ~ g^2\mu ~ Q_s$. But convention varies.)

McLerran-Venugopalan model ••••••• BK equation 000000000000000

Dipole amplitude in MV model

Start with definition of dipole operator

$$S(\mathbf{x}_{\perp} - \mathbf{y}_{\perp}) \equiv \frac{1}{N_{\rm c}} \left\langle \operatorname{Tr} V(\mathbf{x}_{\perp}) V^{\dagger}(\mathbf{y}_{\perp}) \right\rangle \quad V(\mathbf{x}_{\perp}, x^{-}) = \mathbb{P} \exp \left[-ig \int_{-\infty}^{x^{-}} \mathrm{d}y^{-} A^{+} \right]$$

 $\langle A^+_{\alpha}(\mathbf{x}_{\perp}, x^-) A^+_{b}(\mathbf{y}_{\perp}, y^-) \rangle = g^2 \delta^{ab} \mu^2(x^-) \delta(x^- - y^-) L(\mathbf{x}_{\perp} - \mathbf{y}_{\perp})$ Remember, $A^+_{\alpha}(\mathbf{x}_{\perp}, x^-)$ is the covariant gauge field that satisfies

$$\boldsymbol{\nabla}_{\perp}^{2}\boldsymbol{A}_{\alpha}^{+}(\mathbf{x}_{\perp},\boldsymbol{x}^{-}) = \rho(\mathbf{x}_{\perp},\boldsymbol{x}^{-})$$

We'll calculate $L(\mathbf{x}_{\perp} - \mathbf{y}_{\perp})$ later. Discretize x^- to make sense of path ordering

$$x^{-} = n\Delta^{-} \implies \langle A^{+}_{na}(\mathbf{x}_{\perp})A^{+}_{nb}(\mathbf{y}_{\perp})\rangle = g^{2}\delta^{ab}\mu^{2}_{n}\frac{1}{\Delta^{-}}\delta_{mn}L(\mathbf{x}_{\perp}-\mathbf{y}_{\perp})$$

$$S(r) = \lim_{N \to \infty} \frac{1}{N_{\rm c}} \operatorname{Tr} \left\langle e^{-ig\Delta^{-}A_{N}^{+}(\mathbf{x}_{\perp})} \cdots e^{-ig\Delta^{-}A_{n}^{+}(\mathbf{x}_{\perp})} \cdots e^{-ig\Delta^{-}A_{-N}^{+}(\mathbf{x}_{\perp})} \right\rangle$$
$$\times e^{ig\Delta^{-}A_{-N}^{+}(\mathbf{y}_{\perp})} \cdots e^{ig\Delta^{-}A_{n}^{+}(\mathbf{u}_{\perp})} \cdots e^{ig\Delta^{-}A_{-N}^{+}(\mathbf{y}_{\perp})}$$

Note: in V ordering is large x^- to small, in V^{\dagger} inverse

McLerran-Venugopalan model 0000000 3K equation 000000000000000

Infinitesimal Wilson line

Steps in x^- independent and next to each other in product: \implies expectation value for each separately:

$$\left\langle e^{-ig\Delta^{-}A_{n}^{+}(\mathbf{x}_{\perp})}e^{ig\Delta^{-}A_{n}^{+}(\mathbf{y}_{\perp})}\right\rangle \approx \left\langle 1-ig\Delta^{-}A_{n}^{+}(\mathbf{x}_{\perp})+ig\Delta^{-}A_{n}^{+}(\mathbf{y}_{\perp})\right.$$
$$\left.+g^{2}(\Delta^{-})^{2}A_{n}^{+}(\mathbf{x}_{\perp})A_{n}^{+}(\mathbf{y}_{\perp})-\frac{1}{2}g^{2}(\Delta^{-})^{2}\left(\left(A_{n}^{+}(\mathbf{x}_{\perp})\right)^{2}+\left(A_{n}^{+}(\mathbf{y}_{\perp})\right)^{2}\right)\right\rangle +\mathcal{O}(\Delta^{-})^{3/2})$$

 $\left\langle A^{+}\right\rangle =0,$ and thus

$$\left\langle e^{-ig\Delta^{-}A_{n}^{+}(\mathbf{x}_{\perp})}e^{ig\Delta^{-}A_{n}^{+}(\mathbf{y}_{\perp})}
ight
angle$$

$$\approx 1 + g^4 (\Delta^-)^2 \frac{\mu_n^2}{\Delta^-} \left[L(\mathbf{x}_\perp - \mathbf{y}_\perp) - \frac{1}{2} L(\mathbf{x}_\perp - \mathbf{x}_\perp) - \frac{1}{2} L(\mathbf{y}_\perp - \mathbf{y}_\perp) \right] \underbrace{t^{\sigma} t^{\sigma}}_{\approx e^{g^4 \Delta^- C_F \mu_n^2 \left[L(\mathbf{x}_\perp - \mathbf{y}_\perp) - \frac{1}{2} L(\mathbf{x}_\perp - \mathbf{x}_\perp) - \frac{1}{2} L(\mathbf{y}_\perp - \mathbf{y}_\perp) \right]}_{\approx e^{g^4 \Delta^- C_F \mu_n^2 \left[L(\mathbf{x}_\perp - \mathbf{y}_\perp) - \frac{1}{2} L(\mathbf{x}_\perp - \mathbf{x}_\perp) - \frac{1}{2} L(\mathbf{y}_\perp - \mathbf{y}_\perp) \right]}$$

(Remember Δ^- infinitesimal)

BK equation 000000000000000

Put pieces together: dipole operator

We have taken the traces and the expectation values \implies all the infinitesimal values are just commuting numbers.

$$S(r) = \lim_{N \to \infty} \frac{1}{N_c} \operatorname{Tr} \prod_{n=-N}^{N} e^{g^4 \Delta^- C_F \mu_n^2 [L(\mathbf{x}_{\perp} - \mathbf{y}_{\perp}) - L(\mathbf{0})]}$$
$$= \exp\left\{ g^4 C_F \int_{-\infty}^{\infty} dx^- \mu^2 (x^-) \underbrace{[L(\mathbf{x}_{\perp} - \mathbf{y}_{\perp}) - L(\mathbf{0})]}_{[L(\mathbf{x}_{\perp} - \mathbf{y}_{\perp}) - L(\mathbf{0})]} \right\}$$

Note, the MV model is defined by two things:

1. The $\rho\rho$ correlators are Gaussian

2. The $\rho\rho$ correlators are delta functions in tranverse coordinate Until now we have only used property 1. Just choosing some desired functional form for $\Gamma(\mathbf{x}_{\perp} - \mathbf{y}_{\perp})$ is the "Nonlinear Gaussian" approximation.

McLerran-Venugopalan model 00000000 BK equation

Functional form in MV model

Now what are $L(\mathbf{x}_{\perp} - \mathbf{y}_{\perp})$ and $\Gamma(\mathbf{x}_{\perp} - \mathbf{y}_{\perp}) = L(\mathbf{0}) - L(\mathbf{x}_{\perp} - \mathbf{y}_{\perp})$?

$$A^+(k_{\rm T})=\frac{1}{\mathbf{k}_{\perp}^2}\rho(\mathbf{k}_{\perp})$$

$$\begin{split} \left\langle \rho^{\alpha}(\mathbf{k}_{\perp})\rho^{b}(\mathbf{p}_{\perp})\right\rangle &= g^{2}\delta^{\alpha b}\mu^{2}\int\,\mathrm{d}^{2}\mathbf{x}_{\perp}\,\mathrm{d}^{2}\mathbf{y}_{\perp}\,e^{i\mathbf{k}_{\perp}\cdot\mathbf{x}_{\perp}+i\mathbf{p}_{\perp}\cdot\mathbf{y}_{\perp}}\delta^{(2)}(\mathbf{x}_{\perp}-\mathbf{y}_{\perp})\\ &= g^{2}\delta^{\alpha b}\mu^{2}(2\pi)^{2}\delta^{(2)}(\mathbf{k}_{\perp}+\mathbf{p}_{\perp}) \end{split}$$

$$\begin{split} \Gamma(\mathbf{x}_{\perp} - \mathbf{y}_{\perp}) &= \int \frac{\mathrm{d}^{2}\mathbf{k}_{\perp}}{(2\pi)^{2}} \frac{\mathrm{d}^{2}\mathbf{p}_{\perp}}{(2\pi)^{2}} (2\pi)^{2} \frac{\delta^{(2)}(\mathbf{k}_{\perp} + \mathbf{p}_{\perp})}{p_{T}^{2}k_{T}^{2}} \left[1 - e^{-i\mathbf{k}_{\perp} \cdot \mathbf{x}_{\perp} - i\mathbf{p}_{\perp} \cdot \mathbf{y}_{\perp}}\right] \\ &= \frac{1}{2\pi} \int \mathrm{d}k \frac{1 - J_{0}(kr)}{k^{3}} \approx \frac{1}{8\pi} r^{2} \ln \frac{1}{r} \end{split}$$

・ロト・日本・日本・日本・日本・日本

McLerran-Venugopalan model 00000000 BK equation 000000000000000

Dipole operator in the MV model

Final result

$$S(r) \equiv \frac{1}{N_{\rm c}} \left\langle \operatorname{Tr} V(\mathbf{x}_{\perp}) V^{\dagger}(\mathbf{y}_{\perp}) \right\rangle = \exp\left\{ -\frac{g^4 C_{\rm F}}{8\pi} \left[\int_{-\infty}^{\infty} \mathrm{d}x^- \mu^2(x^-) \right] r^2 \ln \frac{1}{r\Lambda} \right\}$$

From which we identify (up to log) the saturation scale as

$$Q_{\rm s}^2 \sim \frac{g^4 C_{\rm F}}{4\pi} \left[\int_{-\infty}^\infty \, {\rm d}x^- \mu^2(x^-) \right] \label{eq:Qs}$$

- ► Note: we spread out delta function $\delta(x^-)$ within the calculation, but in the end only the integral over x^- matters.
- We can also Fourier-transform this to get the "dipole gluon distribution"

$$\varphi_{\text{dip.}}(k_T) \sim k_T^2 \int d^2 \mathbf{r}_\perp e^{i\mathbf{r}_\perp \cdot \mathbf{k}_\perp} S(r)$$

► Thanks to the logarithm of *r* in the MV model expression, it behaves like $1/k_T^2$ at large k_T .

DIS in dipole picture

Gluon saturation & CGC 000000000

McLerran-Venugopalan model

BK equation 000000000000000

Weizsäcker-Williams distribution

By a similar, but more complicated, calculation one can also calculate the WW-distribution

$$\frac{dN}{d^{2}\mathbf{k}_{\perp} dy} = \varphi^{WW}(\mathbf{k}_{\perp}) \sim \left\langle A_{\alpha}^{i}(\mathbf{k}_{\perp})A_{\alpha}^{i}(-\mathbf{k}_{\perp})\right\rangle \quad A_{\alpha}^{i}(\mathbf{x}_{\perp}) = \frac{i}{g}V^{\dagger}(\mathbf{x}_{\perp})\partial_{i}V(\mathbf{x}_{\perp})$$

$$\left\langle A_{\alpha}^{i}(\mathbf{x}_{\perp})A_{b}^{i}(\mathbf{y}_{\perp})\right\rangle = \delta^{\alpha b}\frac{2C_{F}}{g^{2}(N_{c}^{2}-1)}\frac{\nabla_{\perp}^{2}\Gamma(\mathbf{x}_{\perp}-\mathbf{y}_{\perp})}{\Gamma(\mathbf{x}_{\perp}-\mathbf{y}_{\perp})}$$

$$\times \left(\exp\left\{-g^{4}N_{c}\int_{-\infty}^{\infty}dx^{-}\mu^{2}(x^{-})\Gamma(\mathbf{x}_{\perp}-\mathbf{y}_{\perp})\right\} - 1\right)$$

$$\varphi_{WW}(k_{T}) \sim \left(\begin{array}{c}\frac{1}{\alpha_{s}}\ln k_{T}, \quad k_{T} \ll Q_{s}^{2}\\\frac{1}{\alpha_{s}}\frac{Q_{s}^{2}}{k_{T}^{2}}, \quad k_{T} \gg Q_{s}^{2}.\end{array}\right)$$

DIS in dipole picture

Gluon saturation & CGC 000000000 McLerran-Venugopalan model

BK equation 000000000000000

Some comments: two gluon distributions

- Factor in exponent of the WW distribution is an adjoint representation Casimir C_A , compared to $C_F = (N_c^2 1)/(2N_c)$ in the fundamental representation dipole. Expected for gluons.
- Both distributions $\sim 1/k_T^2$ at large $k_T \gg Q_s \implies$

$$xG(x,Q^2) = \int^{Q^2} d^2 \mathbf{k}_\perp \varphi(k_T) \sim \ln Q^2$$

The expected behavior for a gluon distribution. Result of starting from independent point charges

- ► Dipole and WW distributions look quite different at at small k_T . Both exhibit saturation: the behavior changes at $k_T \leq Q_s$; the dipole distribution changes to $\sim k_T^2$ and the WW distribution to $\sim \ln k_T$.
- Both distributions have different operator definitions and appear in different processes. In traditional pQCD factoriation they would need to be measured separately. The MV model (or rather: the nonlinear Gaussian assumption) allows to calculate one from the other.

4 Balitsky-Kovchegov equation

McLerran-Venugopalan model

BK equation

Power counting

- ► Add one soft gluon ⇒ Leading Log (LL), resum by BK evolution
- Add one gluon, but not necessarily soft: Next-to-Leading Order (NLO) (need to subtract the soft gluon!)
- Add two gluons, one of them soft: NLL
 resum by NLO BK equation

- Current research: NLO & NLL
- Previous lectures: LO
- This lecture: LL

DIS in dipole picture

Gluon saturation & CGC 000000000 McLerran-Venugopalan model

BK equation

What happens if one radiates a gluon?

Light cone wavefunction

$$\psi^{q \to qg}(z, \mathbf{k}_{\perp}) = \frac{1}{\frac{\mathbf{p}_{\perp}^{2}}{2\rho^{+}} - \frac{\mathbf{k}_{\perp}^{2}}{2k^{+}} - \frac{\mathbf{p}_{\perp}^{\prime}^{2}}{2\rho^{\prime+}}} \tilde{u}_{s'}(\rho')(-g) t_{ji}^{a} \notin^{*}(k) u_{s}(\rho)$$

Full matrix element (take quark mass m = 0)

$$\bar{u}_{s'}(p')(-g)t^{\alpha}_{ji} \not\in^*(k) u_s(p) = \frac{-2gt^{\alpha}_{ji}}{z\sqrt{1-z}} (\delta_{\lambda,2s} + (1-z)\delta_{\lambda,-2s}) \mathbf{q}_{\perp} \cdot \boldsymbol{\varepsilon}_{\perp \lambda}^*, \quad \mathbf{q}_{\perp} = \mathbf{k}_{\perp} - z\mathbf{p}_{\perp}$$

Focus on the **soft** (or slow) gluon limit $z \rightarrow 0$:

$$\psi^{q \to qg}(k^+, \mathbf{k}_{\perp}) \approx \frac{-2zp^+}{\mathbf{k}_{\perp}^2} \frac{-2gt_{ji}^a \delta_{ss'}}{z} \mathbf{k}_{\perp} \cdot \boldsymbol{\varepsilon}_{\perp \lambda}^* = \frac{4gt_{ji}^a p^+}{\mathbf{k}_{\perp}^2} \mathbf{k}_{\perp} \cdot \boldsymbol{\varepsilon}_{\perp \lambda}^*$$

IR divergences in gluon emission

Squaring the wave function we get a "probability for gluon emission"

$$\mathrm{d}P_{q \to qg} = \left|\psi^{q \to qg}(k^+, \mathbf{k}_\perp)\right|^2 \frac{\mathrm{d}k^+ \mathrm{d}^2 \mathbf{k}_\perp}{2k^+ (2\pi)^3} \sim \frac{\mathrm{d}z}{z} \frac{\mathrm{d}^2 \mathbf{k}_\perp}{\mathbf{k}_\perp^2} \quad \left(\sum_{\lambda = \pm 1} \varepsilon_i \varepsilon_j^* = \delta_{ij}\right)$$

This has 2 types of divergences:

collinear $\int_0 \frac{d^2 \mathbf{k}_\perp}{\mathbf{k}_\perp^2}$ This will cancel when we consider emission from color neutral dipole.

soft $\int_{\sim 0} \frac{dz}{z}$ Does not cancel, but needs to be resummed. The soft divergence is not really a divergence.

- The limit $z \to 0$: large $q\bar{q}g$ invariant mass: $M_{a\bar{a}g} \to \infty$
- We are working in the " $s = \infty$ " eikonal approximation
- Physically, one must however have M²_{qāg} < s ⇒ z ≥ [⊥]/s (where "⊥" is some relevant transverse momentum scale.)
- Thus "divergence" is a sign of a large log $\sim \alpha_s \ln s \sim \alpha_s \ln 1/x$

We will resum this large logarithm using the Balitsky-Kovchegov renormalization group equation

McLerran-Venugopalan model

BK equation

Soft gluons and large logs, idea of RGE

- Emitted gluons have z between 1 and x: each gluon contributes ~ α_s ln 1/x
- ► For x small $\alpha_s \ln 1/x \sim 1 \implies$ all n gluon emissions contribute same \implies resum
- Done by Renormalization Group Eq

Is the **gluon at** y a part of γ^* or of p? You have to decide! Physical cross section is the same.

gluons up to y are part of proton

$$\tau^{\gamma^* p} = \left[\psi^{\gamma^* \to q\bar{q}} \Big|_{\gamma}^2 \otimes 2 \text{Im} \mathcal{A}_{\gamma}^{q\bar{q}p} + \left| \psi^{\gamma^* \to q\bar{q}g} \right|_{\gamma}^2 \otimes 2 \text{Im} \mathcal{A}_{\gamma}^{q\bar{q}gp} + \dots \right]$$
$$= \left[\psi^{\gamma^* \to q\bar{q}} \Big|_{\gamma + \Delta \gamma}^2 \otimes 2 \text{Im} \mathcal{A}_{\gamma + \Delta \gamma}^{q\bar{q}p} + \left| \psi^{\gamma^* \to q\bar{q}g} \right|_{\gamma + \Delta \gamma}^2 \otimes 2 \text{Im} \mathcal{A}_{\gamma + \Delta \gamma}^{q\bar{q}gp} + \dots \right]$$

gluons up to $y + \Delta y$ are part of proton

Can calculate $\left|\psi^{\gamma^* \to q\bar{q}}\right|_{\gamma}^{2}$'s \Longrightarrow get differential equation for unknown \mathcal{A}

Quick derivation of the BK equation

Let's put this idea into practice. We will

- Calculate $\psi^{\gamma^* \to q\bar{q}g}(z)$
- Take soft gluon limit $z \rightarrow 0$
- Reabsorb the gluon to become a part of the target
- Get evolution equation for $q\bar{q}$ cross section

We need:

In the soft gluon limit $z \rightarrow 0$ this calculation simplies, because

$$\psi^{\gamma^* \to q\bar{q}g} \approx \psi^{\gamma^* \to q\bar{q}} \left(\psi^{q \to qg} + \psi^{\bar{q} \to \bar{q}g} \right)$$

This is true only for limit $z \to 0$ where $k_{q\bar{q}g}^- - k_{\gamma^*}^- \approx k_g^- \sim 1/z$ (In the full kinematics the gluon emission knows about the γ^* , not just the emitting parent $q/\bar{q} \implies$ this makes full NLO cross section computation much complex)

McLerran-Venugopalan model 00000000 BK equation

Gluon emission from coordinate space dipole

First step: Fourier-transform the gluon emission wavefunction to coordinate space

$$\psi^{q \to qg}(k^+, \mathbf{r}_{\perp}) = \int \frac{\mathrm{d}^2 \mathbf{k}_{\perp}}{(2\pi)^2} e^{i\mathbf{k}_{\perp} \cdot \mathbf{r}_{\perp}} \psi^{q \to qg}(k^+, \mathbf{k}_{\perp}) = -i2p^+ \frac{2gt_{ji}^{\alpha}}{2\pi} \frac{\boldsymbol{\varepsilon}_{\perp} \cdot \mathbf{r}_{\perp}}{\mathbf{r}_{\perp}^2} \delta_{s,s'}$$

Second step: sum emission from quark and antiquark (note relative sign!)

 $\textbf{r}_{\perp} = \textbf{x}_{\perp} - \textbf{y}_{\perp} \quad \textbf{r}_{\perp}' = \textbf{x}_{\perp} - \textbf{z}_{\perp} \quad \textbf{z}_{\perp} - \textbf{y}_{\perp} = \textbf{r}_{\perp} - \textbf{r}_{\perp}'$

$$\begin{aligned} |\gamma^*\rangle_{\text{int}} &= |\gamma^*\rangle + \int_{z,\mathbf{r}_{\perp}} C(\mathbf{r}_{\perp})\psi^{\gamma^* \to q\bar{q}}(z,\mathbf{r}_{\perp}) |q_i(\mathbf{x}_{\perp},z)\bar{q}_i(\mathbf{y}_{\perp},1-z)\rangle \\ &+ \int_{z,\mathbf{r}_{\perp},\mathbf{r}'_{\perp}} \psi^{\gamma^* \to q\bar{q}}(z,\mathbf{r}_{\perp}) \int \frac{\mathrm{d}z'}{4\pi z'} \frac{-i2g}{2\pi} t^{\alpha}_{ji} \left[\frac{(\mathbf{x}_{\perp}-\mathbf{z}_{\perp})\cdot\boldsymbol{\varepsilon}_{\perp}}{(\mathbf{x}_{\perp}-\mathbf{z}_{\perp})^2} - \frac{(\mathbf{y}_{\perp}-\mathbf{z}_{\perp})\cdot\boldsymbol{\varepsilon}_{\perp}}{(\mathbf{y}_{\perp}-\mathbf{z}_{\perp})^2} \right] \\ &\times \left| q_i(\mathbf{x}_{\perp},z)\bar{q}_j(\mathbf{y}_{\perp},1-z)g_{\alpha}(\mathbf{z}_{\perp},z') \right\rangle, \end{aligned}$$

McLerran-Venugopalan model

BK equation

Virtual term

Here: take a "unitarity" shortcut instead of calculating loop diagram

$$\begin{split} |\gamma^*\rangle_{\text{int}} &= |\gamma^*\rangle + \int_{z,\mathbf{r}_{\perp}} C(\mathbf{r}_{\perp})\psi^{\gamma^* \to q\bar{q}}(z,\mathbf{r}_{\perp}) \left| q_i(\mathbf{x}_{\perp},z)\bar{q}_i(\mathbf{y}_{\perp},1-z) \right\rangle \\ &+ \int_{z,\mathbf{r}_{\perp},\mathbf{r}'_{\perp}} \psi^{\gamma^* \to q\bar{q}}(z,\mathbf{r}_{\perp}) \int \frac{\mathrm{d}z'}{4\pi z'} \frac{-i2g}{2\pi} t^{\alpha}_{ji} \left[\frac{(\mathbf{x}_{\perp} - \mathbf{z}_{\perp}) \cdot \boldsymbol{\varepsilon}_{\perp}}{(\mathbf{x}_{\perp} - \mathbf{z}_{\perp})^2} - \frac{(\mathbf{y}_{\perp} - \mathbf{z}_{\perp}) \cdot \boldsymbol{\varepsilon}_{\perp}}{(\mathbf{y}_{\perp} - \mathbf{z}_{\perp})^2} \right] \\ &\times \left| q_i(\mathbf{x}_{\perp},z)\bar{q}_j(\mathbf{y}_{\perp},1-z)g_{\alpha}(\mathbf{z}_{\perp},z') \right\rangle, \end{split}$$

The gluon emission forces us to correct the normalization of the original dipole by a factor $C(\mathbf{r}_{\perp}) = 1 + O(\alpha_s)$

$$\begin{split} N_{\rm c} \left| C(\mathbf{r}_{\perp}) \right|^2 &= \\ N_{\rm c} - \frac{(2g)^2}{(2\pi)^2} \frac{1}{4\pi} t^{\alpha}_{ij} f^{\alpha}_{ji} \int \frac{d\mathbf{z}'}{\mathbf{z}'} \int d^2 \mathbf{r}'_{\perp} \sum_{\lambda = \pm 1} \left| \frac{(\mathbf{x}_{\perp} - \mathbf{z}_{\perp}) \cdot \boldsymbol{\varepsilon}_{\perp \lambda}}{(\mathbf{x}_{\perp} - \mathbf{z}_{\perp})^2} - \frac{(\mathbf{y}_{\perp} - \mathbf{z}_{\perp}) \cdot \boldsymbol{\varepsilon}_{\perp \lambda}}{(\mathbf{y}_{\perp} - \mathbf{z}_{\perp})^2} \right|^2 \\ &= N_{\rm c} - \frac{\alpha_{\rm s}}{\pi^2} \frac{N_{\rm c}^2 - 1}{2} \Delta y \int d^2 \mathbf{r}'_{\perp} \frac{\mathbf{r}_{\perp}^2}{\mathbf{r}'_{\perp}^2 (\mathbf{r}_{\perp} - \mathbf{r}'_{\perp})^2} \qquad \sum_{\lambda = \pm 1} \varepsilon_i^{(\lambda)} \varepsilon_j^{(\lambda)*} = \delta_{ij} \end{split}$$

McLerran-Venugopalan model 00000000 BK equation

Crucial step: move the gluon to the target

Scattering amplitude is $Im \mathcal{A}(\mathbf{r}_{\perp}) = \int d^2 \mathbf{b}_{\perp} \mathcal{N}(\mathbf{b}_{\perp}, \mathbf{r}_{\perp})$. Absorb corrections from gluon to a redefinition of the $q\bar{q}$ amplitude

$$\mathcal{N}_{q\bar{q}}^{\gamma+\Delta\gamma} = \mathcal{N}_{q\bar{q}}^{\gamma} + \frac{\alpha_{s}}{\pi^{2}} \frac{N_{c}^{2} - 1}{2N_{c}} \int_{\gamma}^{\gamma+\Delta\gamma} d\ln 1/z' \int d^{2}\mathbf{r}_{\perp}' \frac{\mathbf{r}_{\perp}^{2}}{\mathbf{r}_{\perp}'^{2}(\mathbf{r}_{\perp} - \mathbf{r}_{\perp}')^{2}} \left[\mathcal{N}_{q\bar{q}g}^{\ln 1/z'} - \mathcal{N}_{q\bar{q}}^{\ln 1/z'} \right]$$

Dipole scattering on new target $\mathcal{N}_{q\bar{q}}^{y+\Delta y}$ is

- Dipole scattering off original target $\mathcal{N}_{a\bar{a}}^{\gamma}$
- Dipole emits a gluon into rapidity interval $[y, y + \Delta y]$, which scatters off target
- Normalization of original dipole is corrected (There are now less dipoles in γ*)

Almost there

Want an equation for $\mathcal{N}_{q\bar{q}}$: but enocuntered new quantity $\mathcal{N}_{q\bar{q}g}$. Needs to be related to $\mathcal{N}_{q\bar{q}} \implies$ Use the large N_c approximation McLerran-Venugopalan model 00000000 BK equation

Gluon at large $N_{\rm c}$

- ► At large N_c \implies gluon = $q\bar{q}$ pair (not dipole!)
- ► $N_c^2 1$ gluon colors $\approx N_c^2$ quark-antiquark pair colors.
- ► Had |q(x⊥)q(y⊥)g(z⊥))
- ► Approximate by |q(x⊥)q(z⊥)q(z⊥)q(y⊥)⟩

Now, instead of $N_{q\bar{q}g}$, we need $N_{q\bar{q}q\bar{q}}$; amplitude for simultaneous scattering of two dipoles. (Note: the gluon is not becoming a new dipole, but the common end of two new dipoles.)

Two dipole scattering amplitude

- *N* is really scattering probability;
- S = 1 N is probability **not to scatter**

For two dipoles:

► No scattering: neither dipole scatters $\implies S_{q\bar{q}q\bar{q}} = S_{q\bar{q}}S_{q\bar{q}}$

• Scattering probability $N_{q\bar{q}q\bar{q}} = 1 - S_{q\bar{q}q\bar{q}} = 1 - (1 - N_{q\bar{q}})(1 - N_{q\bar{q}})$ Thus we end up with the approximation:

$$\begin{split} \mathcal{N}_{q(\mathbf{x}_{\perp})\bar{q}(\mathbf{y}_{\perp})g(\mathbf{z}_{\perp})} \approx \mathcal{N}_{q(\mathbf{x}_{\perp})\bar{q}(\mathbf{z}_{\perp})} + \mathcal{N}_{q(\mathbf{z}_{\perp})\bar{q}(\mathbf{y}_{\perp})} - \mathcal{N}_{q(\mathbf{x}_{\perp})\bar{q}(\mathbf{z}_{\perp})}\mathcal{N}_{q(\mathbf{z}_{\perp})\bar{q}(\mathbf{y}_{\perp})} \end{split}$$
 and our equation is

$$\begin{split} \mathcal{N}_{q\bar{q}}^{y+\Delta y} &= \mathcal{N}_{q\bar{q}}^{y} + \frac{\alpha_{s}}{\pi^{2}} \frac{N_{c}^{2} - 1}{2N_{c}} \int_{y}^{y+\Delta y} d\ln 1/z' \int d^{2}\boldsymbol{z}_{\perp} \frac{(\boldsymbol{x}_{\perp} - \boldsymbol{y}_{\perp})^{2}}{(\boldsymbol{x}_{\perp} - \boldsymbol{z}_{\perp})^{2}(\boldsymbol{z}_{\perp} - \boldsymbol{y}_{\perp})^{2}} \\ &\times \left[\mathcal{N}_{q\bar{q}}^{\ln 1/z'}(\boldsymbol{x}_{\perp}, \boldsymbol{z}_{\perp}) + \mathcal{N}_{q\bar{q}}^{\ln 1/z'}(\boldsymbol{z}_{\perp}, \boldsymbol{y}_{\perp}) - \mathcal{N}_{q\bar{q}}^{\ln 1/z'}(\boldsymbol{x}_{\perp}, \boldsymbol{z}_{\perp}) \mathcal{N}_{q\bar{q}}^{\ln 1/z'}(\boldsymbol{z}_{\perp}, \boldsymbol{y}_{\perp}) \\ &- \mathcal{N}_{q\bar{q}}^{\ln 1/z'}(\boldsymbol{x}_{\perp}, \boldsymbol{y}_{\perp})) \right] \end{split}$$

Which is easy to write differentially in y

(▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のへで)

Summary

Balitsky-Kovchegov equation (~1995)

$$\begin{split} \partial_{y} \mathcal{N}(\textbf{r}_{\perp}) &= \frac{\alpha_{s} N_{c}}{2\pi^{2}} \int d^{2}\textbf{r}_{\perp}^{\prime} \frac{\textbf{r}_{\perp}^{2}}{\textbf{r}_{\perp}^{\prime 2} (\textbf{r}_{\perp}^{\prime} - \textbf{r}_{\perp})^{2}} \\ &\times \left[\mathcal{N}(\textbf{r}_{\perp}^{\prime}) + \mathcal{N}(\textbf{r}_{\perp} - \textbf{r}_{\perp}^{\prime}) - \mathcal{N}(\textbf{r}_{\perp}^{\prime}) \mathcal{N}(\textbf{r}_{\perp} - \textbf{r}_{\perp}^{\prime}) - \mathcal{N}(\textbf{r}_{\perp}) \right] \end{split}$$

This is the basic tool of modern small-x physics.

- Given initial condition $\mathcal{N}(\mathbf{r}_{\perp})$ at $y = y_0$ the equation predicts the scattering amplitude at larger y = smaller x = higher \sqrt{s} .
- Drop nonlinear term: BFKL equation
- Divergences at r'_⊥ → 0 and r'_⊥ → r_⊥ regulated because N(0) = 0 due to color neutrality.
- Enforces black disk limit $\mathcal{N} < 1$
- For practical work coupling α_s should depend on distance: some combination of r_⊥, r'_⊥, r_⊥ − r'_⊥

McLerran-Venugopalan model

BK equation

What the solution of BK looks like

BK can be solved numerically

- Small dipoles r ≤ 1/Q_s scatter very little
- Large dipoles r ≥ 1/Qs scatter with probability almost one, but not more
- Saturation scale in between grows with In 1/x.

(Actually cheating, this plot is a solution of JIMWLK, which generalizes BK)

Remember, for F_2, F_L convolute this with the $\psi^{\gamma^* \to q\bar{q}}$

$$\sigma_{T,L}^{\gamma^* p} = \int d^2 \mathbf{b}_{\perp} d^2 \mathbf{r}_{\perp} dz \left| \psi^{\gamma^* \to q\bar{q}}(\mathbf{r}, z)_{T,L} \right|^2 2\mathcal{N}(\mathbf{r}_{\perp}, \mathbf{b}_{\perp}, x)$$

Fits HERA data ($x < 0.01 \& Q^2$ moderate) extremely well

DIS in dipole picture 0000000000000000	Gluon saturation & CGC 000000000	McLerran-Venugopalan model 00000000	BK equation

Exercise

(Kovchegov & Levin, 4.5 b) Solve the BK equation in zero transverse dimensions:

$$\partial_y N = \alpha_s N - \alpha_s N^2$$
, $N(y = 0) = N_0 \ll 1$