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US Electron lon Collider

« 2"d high energy electron
lon collider in the world for
further exploring the
physics inside the nucleon

* Build on top of existing
RHIC complex, add an
additional electron storage
ring for collision, rapid
cycling electron ring and
Its pre-injectors

» Both beams are designed
to be polarized

Electron
Injector (RCS)

BNL-EIC




Comparison between HERA and US-EIC

SLAS
| usec | R
hadron lepton hadron lepton

species p, He, ... e P e

energy [GeV] 275 (p) 10 920 27.6

# of bunches 1160 1160 174 174

Bunch 6.9 17.2 7.2 2.9

intensity[101°]

Emittance[nm] 11.3/1.0 20.0/1.3 5.1/5.1 20/3.4

Beta* [cm] 80/7.2 45/5.6 245/18 63/26

Bunch length [cm] 6 0.7 19 1

Luminosity 1.0 0.004

[103*cm™2s71]
Unique challenges with EIC
* High luminosity and High polarization of both beams

[1] EIC Concept Design Report, 2021
[2] V. Ptitsyn, From HERA to Future Electron-lon Colliders, Proceeding of PACO07, 2007.
https://www.bnl.gov/isd/documents/36707.pdf



Why particle accelerator?: Engine of Discovery

- 1950

The Bevatron began to operate in
1954 and the antiproton was
discovered in 1955.

1960

The inner structure of nucleons
(protons and neutrons) was
discovered at SLAC in 1969.

™ 1970

Discovery of 3/ particle (composed
of charm quarks) was discovered at
Brook-haven and SLAC in 1974,

1980 The tau lepton was discovered at

SLAC in 1976.

The W and Z particles were
discovered at the proton-antiproton
collider at CERN in 1983.

1990

The first direct evidence for the
top quark was announced at the

- 2000 Tevatron at Fermilab in 1995.

The Nobel Prize
in Physics 1959

Chamberiain

Segré

The Nobel Prize
in Physics 1990 {7

)

Friedman Kendall

)

Richter Ting

The Nobel Prize
‘
.4 g

in Physics 1995
Rubbia wvan der Meer

Taylor

The Nobel Prize
in Physics 1976

The Nobel Prize
in Physics 1984

http://www.nobelprize.org/educational/physics/accelerators/discoveries-1.html



Timeline of Accelerators

Livingston Plot
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Legends of Accelerator Development

. John D- Cockcroft and Ernest Walton
—  Invented Cockcroft-Walton Accelerator

e Rolf Wideroe: a nuclear physicist and engineer

—  Invented concept of LINAC when he was
a Ph-D student at RWTH-Aachen

—  Invented the principle of Betatron

e«  Ernest Orlando Lawrence: a nuclear physicist
—  Invented/implemented cyclotron
—  Nobel Laureate in 1939




Legends of Accelerator Development

E- Courant, H- 5- Snyder, M- Stanley Livingston:
Accelerator physicists

— Invented strong focusing principle

Bruno Touschek: particle physicist
—  father of the T°* ete- collider (AdA)

Simon van der Meer: particle physicist and engineer
—  Invented/implemented Stochastic Cooling, and



Modern High Energy Accelerators

* Linear Accelerator

* Cyclotron

* Betatron

* Synchrotron

* Plasma wake field acceleration



RF field based Acceleration

Can we accelerate particles with DC electric field?

e OF cause, we can!

- But, can’t reach high enerqgy

e what about in a circular machine?



For a circular machine

« Use time varying electric field to accelerate particles
- RF cavity or a group of cavities
- This is also required for longitudinal focusing for storage

« Cyclotron: fixed B field, spiral trajectory m

o +-

B

« Synchrotron:

- Fixed orbit with matched B field % = VSTS

- Rate of energy gain for a synchronous particle % = %eVsinng

d ev .
- The rate of momentum change: dio == sindgq




RF synchronism

Synchronism condition

At = N/f;

I




RF synchronism

For a circular machine

b= P Brm
qBy qBy

Time between each cavity passage is t=Lv, where v is the velocity and L is
the circumference for a circular accelerator. Hence, we have

¢
RF phase for each pass \

¢n+1 = ¢n + wrf(T + AT)n+1




Longitudinal Motion

ol As

o e M\

The field of one RF cavity is € = €, sin(qbrf(t) + ¢ ), where
° qb,.f(t) = hwyt is the phase of the RF field

° Wo = 30C/R0 is angular revolution frequency of the synchronous particle
* Ry is the average radius

For the synchronous particle, the energy gain after passing the cavity is
g

AE, = qge, fjﬁisin(hwot + @) Byc dt,

2focC
where g is the width of the ca(ility gap

This then yields AE, = eeygTsing, = eVsing,

The acceleration rate of the synchronous particle is

E; (1)0 .
= —2cel qub
0 21T s



Longitudinal Motion

The acceleration rate for a non-synchronous particle is

w
E= —qumqb

where E = Ey + AE, w = wg + Aw and gb = ¢s + A are the energy, angular
revolution frequency and the RF phase of the non—synchronous particle,
respectively.

With this, we have ¢ — ¢, = h(w — wy)t. Hence, ¢ = hAw

As we know, iw ﬁ 2 — 1. Wlthg =1 +i(5+0(52) and R = Ry(1 + y26 +
0 0 0
Aw

A
0(65%) where § = ?p is the momentum spread, one can show ¢ = hwy— =
Wo

1

hw, (——y—)@ or
1

¢ = hwynd, wheren = iz 7
Vi



Longitudinal equation of motion

el Ar>
S | Y\ Y
. 1 AE
With 6 = ——, we have
Bo Eo
AE eV . . ) - w? AE
— sing — sin and®d = h L
. = 5 (sing —sing) and ¢ = hy 70

This yields the 2nd order differential equation

2

qB = hn “o qV (sing — sing;)

2mf5 Eg
(AE) _ . 4V@o AE
Wy~ L 2nB§Eg cos¢ Wo
For small A¢p = ¢ — ¢,
2
A¢ = hn qVcosp, AP

Znﬁo



Longitudinal equation of motion

(=g

I
>
L]

Clearly, a stable motion of the phase requires ncos¢, < 0
* below transition, n < 0, ¢; <™/,
e above transition,n > 0,7 > ¢, > "/,

and Ag(t) = A cos(Qsw,t + x), where

Q. =% = hqVincoses|
S Zﬂﬁ(z)EO

(0]

1 AR
T

is the synchrotron tune, i.e. # of synchrotron oscillations in one orbital revolution

Example:

for accelerating protons in RHIC, harmonic is 360, RF voltage is 12MV, and y; =

22.89, the synchrotron tune at injection energy 28.3 GeV is 0.00455.



Synchrotron Oscillation

¢ = hn

21 ﬁ’oEo

qV (sing — sing,)



Transition energy

o1 AL

o e AN

In previous slide (#15), we define the average radius R = Ry(1 + ao6 + ;6% +

: : : Ap .

--+), where R, is the average radius of the reference particle, 6 = ?p is the
; 1 1
momentum spread, and ¢ = hwynd, wheren = Z7 7
t

AL 1 : "

We then have TR 75, and where y; is known as transition energy.
t

As phase stability requires ncos¢,; < 0, when y = y; the time between each
cavity passage becomes independent of energy. This is also known as isochronous
condition

Y <V;: P1<Py<P,

0.5 .
Accelerating

1 z 3 4 2 =]

-0.5 -0.5




Longitudinal equation of motion

2
With - (hw0n5)2 + hr] sy eV (cosp + ¢ sin ¢pg) = const., the
0*~0

phase space of (0, ¢) forms a closed curve, RF bucket

\

RE)

RF-bucket ﬁ AN
=/




Stationary bucket

o1 A

o e AN

_/"". - .“.'V""- - .“.'v"" N .“"\

RSN/ N

We've seen this behavior for the pendulum




Potential Energy of an RF bucket

1.00 1
0.75 1
0.50 4
0.25 1
0.00 4
—0.25 1
—0.50 1
—0.75 1
—1.00 1 .

—Cos@ — gsing
—Ccosg — gsing

s ¢, Is the turning point
* while ¢, Is the stable fixed point, m — ¢, is the unstable fixed point
* bucketlengthis m— ¢p;—¢,



RF Bucket w. different synchrotron phase

0.02 1
0.01 1
Sl 0.00-
~0.01 |
—0.02 1
3 2 -1 0 1 2 3
ps[rad]
0.04 0.02
0.03 - 0.00 -
0.02 -
—0.02 1
0.01
—0.04 1
Sl 0.001 Sk
—0.01 1 —0.06 1
—0.02 1 —0.08 1
~0.03 1 —0.10 .
—0.04 oo




Synchrotron motion at large amplitude

ol A

 The linear approximation is only applicable to the particles that are
moving very closely around the phase of the synchronous particle

* In reality, it often happens that the beam fills up the full bucket.
Hence, one has to deal with the intrinsic non-linear aspect of the

longitudinal motion
* In general, the synchrotron tune depends on the amplitude of the

synchrotron oscillation

0.0040 1 ——.._.___“-\-
hqV|ncos
— 0-amp tune: Q4o = avin 5 Psl 50035 e
znﬂOEO "'-.,_..
- 0.0030 - N
—in general, Q; = Q4 3 S “u
ZK(Sinsz) 0.0025 | .,
1 dx 0.0020 - >
K(b) = fo .
V1-x2/1-nx? 0.0015 -
at seperatrix, the synchrotron mo

00 05 10 1.5 2.0 25 3.0
becomes very slow
¢'max[rad]



Beam manipulation: RF capture

>
)

non-adiabatic
capture 5
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Types of magnets in a synchrotron

ol A~

i

*Dipoles: uniform magnetic field in the gap
- Bending dipoles
- Orbit steering

*Quadrupoles
- Providing focusing field to keep beam from
being diverged

*Sextupoles:
- Provide corrections of chromatic effect of beam dynamics

*Higher order multipoles



Focusing from quadrupole

X —_—bl
| S
€ f >
B - 1 _gB'l
Yol 45 4B == oy
foor g gm fogmy

Required by Maxwell equation, a single quadrupole has to provide

focusing in one plane and defocusing in the other plane

VxB=0 B, =BlyandB, = Bl



Transfer matrix of a qudruploe

Thin lens: length of quadrupole is negligible to the displacement

relative to the center of the magnet

[ qB gB'l

x =-kix



Transfer matrix of a drift space

o1 AR
of b M\
Transfer matrix of a drift space
e e R
y E Ax
S
€ L >

&‘xf? el L@xﬁ
8x';3 ) 80 15836'5



Lattice

Arrangement of magnets: structure of beam line
* Bending dipoles, Quadrupoles, Steering dipoles, Drift space
and Other insertion elements
Example:
* FODO cell: alternating arrangement between focusing and

defocusing quadrupoles
f

AT WY
\ 'l

—L L >

< One FODO cell

>



FODO lattice

Net effect is focusing

Provide focusing in both planes!



Curverlinear coordinate system

Coordinate system to describe particle motion in an accelerator

Moves with the particle

Set of unit vectors:

5(s) 5 df;(s)
o ds(s)
x(s)=-r ”

y(s) = x(s) " s(s)



Equation of motion

i as(s) L 25
| ds r
(s) ~ Lo
0 E ds 'a
() _
ds

Equation of motion in transverse plane

F(s) =75 (s) + xx(s) + yp(s)



Equation of motion

dr(s) _ ds  dr, . dx
= + + X — =—|(1+—)s+ +
” dt[ds x'x X +y'y]= [( r)S x'x+y'y]
. ds
Y = E[(l+—)s+xx+yy] vs+vx+vy
2 %dSO 12 12
= 1+ + +
v M T [( ) x“+y*]
dZF(S) ds dv p? ., rtx
» [(x"- )x —S+y 'J]

di*  dt ds 1+ %)



Equation of motion

2_* 2 - - =~
d7(s) SV ("~ r+x B
2
dt (1+£)2

gmy gmy
n qB X 2 " qu —
=95 1+ X - =0



Transverse motion: betatron oscillation

The general case of equation of motion in an accelerator

x"'+/c=0  Where k can also be negative

» Fork>0
x(s)= Acos(Wks+ ©)  x'(s) = Ak sin(Wks + ¢©)
» Fork <0

x(s) = Acosh(Wks+ ©) x'(s) = -Ak sinh(\ ks + C)



Transfer matrix of a quadrupole

* For a focusing quadrupole

8 0
& . 0 ¢ cosvkl irsin\/kl o
g xt S . B

Pou g—\/%sin\/%l cos/kl ;e

* For a de-focusing quadrupole

;

2 0 ¢ coshvkl  —sinhAl

¢ Tt =g Vk

¢ G
g

out

xt
’ ~Jksinhkl  cosh/kl

n



Hill's equation

In an accelerator which consists individual magnets, the equation of motion can be

expressed as,
x"+k(s)x=0 k(s+ Lp) = k(s)
Here, k(s) is an periodic function of L, , which is the length of the periodicity of

the lattice, i.e. the magnet arrangement. It can be the circumference of machine or

part of it.
Similar to harmonic oscillator, expect solution as

x(s) = A(s)cos(¥(s) + x)

or.

x(s)=A Ly () cos(y(s) + x) ,Bx(s + Lp) = Bx(s)



Hill' s equation: cont’ d

x'(s) = =44/, (s)y (s)sin((s) + ©) + ( )Aw/llb (s) cos(y(s) + ©)
with
_ b", bl .
VY (s) = b(s) Tbx A +kb: =1

» Hill's equation x''+k(s)x =0 s satisfied
x(s) = 4~/ b, (s) cos(y(s) + ¢)

x'(s) = -4/ b,(s) sin(y(s) + €) + ( )A 1/b,(s) cos(y(s) + ¢)



Betatron oscillation

* Beta function S,(s):

— Describes the envelope of the betatron oscillation in an accelerator
(B)2

vs 1
— Phase advance:  V(s) = () ds

" D,(s)

— Betatron tune: number of betatron oscillations in one orbital turn

_’L])(O|C) gﬁ ds 1270 R




Phase space

o1 A

A 7>
O NS

* In a space of x-x_, the betatron oscillation projects an ellipse

Byx'? + Vex? + 2a,,xx" = €,

where
( py €x  —Suemespeescy
1 — —
Ay = _E,B;c " ¥
_ 2
IBxVx - 1 + ax

* The set of parameter (5,, Ay, Vy)
which describe the phase space ellipse

’
’

* Courant-Snyder invariant €,: the area
of the ellipse in unit of



Transfer Matrix of beam transport

Proof the transport matrix from point | to point 2 is
;
aex(s2)0 \/7((:05)/8 , tasiny, ) Jbb,siny, aex(81)0
G AL TNV o Py (cosxs -asiny,, )-8 ¥
g @ 2”1 2”1 2”1
» Hint:

x(s) :Aw/bx s cos(y1(s) + C)

x'(s) = —A4/11b,(s) sin(y(s) + €) + ( )A 1/b,(s) cos(y(s) + ¢)




One Turn Map

Transfer matrix of one orbital turn

&(cos2pQ, +a,, sin2pQ,) b, sin2pQ, 0

2x(sy +C)0_g 1+ 22 & x(s,)0

a.. .
gx (s, + CO)g g 3 ~2sin2pQ. (cos2pO. - a, sm2pQ)_8x(S0)g

X80

Stable condition
Tr(M, ) =2c0s2p0, mmm—mp |
& x(s+ C)O aex(S)O
8x (s + C)g gx (S)g

& x(s+ C)O &x(S)O
NS M PO A

T]"( S+C) £1O

» Closed orbit:



Stability of transverse motion

Matrix from point | to point 2
M., =M MM

S2181
» Stable motion requires each transfer matrix to be stable,i.e. its

eigen values are in form of oscillation
&1 00
M- H[|=0  win =g |- and det(M)=1

g

F - Tr(M) 1+ det(M) =0

1
I=%Tr(M)i\/%[Tr(M)]2—l ) |;MM)ELO




Dispersion function

Momentum spread

A
Define X = D(S)—p

/ P

Dispersion function



Dispersion function: cont’ d

In drift space

-0 and =g P "=

r

dispersion function has a constant slope

» In dipoles,

1 2p,

%10 and B'=() D"+[r2

P

1

r



Dispersion function: cont’ d

» For a focusing quad,

1_0y and B>0 b p'+B 2 p=0
r p

dispersion function oscillates sinusoidally

» For a defocusing quad,

1.y and B'<0 bp-gfep=0

r P

dispersion function evolves exponentially



Chromatic effect

Comes from the fact the the focusing effect of an quadrupole is
momentum dependent

i = J] :> P.articles with different momentum have
f different betatron tune

- Higher energy particle has less focusing

Chromaticity: tune spread due to momentum spread

Tune spread
80,7

gx,y - Ap/p—> mMomentum spread




Chromaticity

» Transfer matrix of a thin quadrupole

1 O 1 0 1 O 1 0
VS R I P VI S Y RV
/ fp / /

Transfer matrix

1 0
M(s+C,5)=MB,A)|_1
f

1 0
(MP 1)
fp

1 0
=MB,A)|_1
f




Chromaticity

(cos2mQ +a,  sin2xQ ) B, sin2m0, 1 0
_ 2 1 A
M(s+C,s) = _1+ Ay s, sin27Q., (cos2aQ. —o, - sin27Q ) (f ]‘f 1]
1 Ap : :
(cos2nQ +a,  sin2aQ )+ ?— v, SIN27Q, B, sSIn2mQ,
P
| 1+, 1 Ap -
— =-sin2mQ, + (cos2mQ, -, sm2ﬂQ )——— (cos2nQ —-a, . sin27Q, )
. b, fp
cos[27(Q, + AQ,)] = —Tr(M(S +C,s)
1 I A
cos[2x(Q. + AQ )] =cos2aQ_ + —p., sin2aQ — op

20 fp




Chromaticity

1 1 A
cos[2x(Q. + AQ )] =cos2aQ._ + 5 B sinZan——p

fp

Assuming the tune change due to momentum difference is small

cos2mQ. —2aAQ sin2xQ = cos2nQ. + % B sinZan%%
p
1 1 A AQ. 1 1
AQx=__ﬁxso__p §x =£=_—_ﬁ(s)
dm " f p Aplp 4m f




Chromaticity of a FODO cell

B; ﬁ
/ﬁ\p g 2L=sinlAy /2]
\ Vo
. L
L L,'i ] ) sm[AqJ/2]=?
< One FODO cell .
__ &1 10 __ L LIf
o Tl W Sy
§x=—ltanA—w
7T 2




Chromaticity correction

* Nature chromaticity is always negative and can be large and can
result to large tune spread and get close to resonance condition

* Solution:
- A special magnet which provides stronger focusing for
particles with higher energy: sextupole




Sextupole

1
B_=mxy B, = Em(x2 - %)

Focusing strength in horizontal plane:

B, = mx
1°B, _ ml
where m = 0 and k= E” | is the magnet length
X

Tune change due to a sextupole:

DQx:ib k, x letx:D%

X,80 " 8x

4p p

po /22=L 4 ¥ p

D 4,0 X,Sg Sx T x




Chromaticity Correction

DQX / Dp - 1 bXS kSX Dx
p 4p

Sextupole produces a chromaticity with the opposite sign of the quadrupole!

It prefers to be placed after a bending dipole where dispersion function is

non zero

Chromaticity after correction

X:——— Zkb +—Zk b D

SXl X,



Effect of Errors



Closed orbit distortion

closed orbit is defined as
x(s+C)\ _ [ x(s)\ _ x(s)
(xr<s+c>) = (xr(s)) =M(s +Cs) (xr(s))

This yields

(M(s+C,s)=1) (x(s)) =0

x'(s)

In a circular accelerator without error, one
can see x = 0 = x’ is the closed orbit, i.e the

orbit through the center of the quadrupoles is the closed orbit



Closed orbit distortion

Dipole kicks can cause particle’ s trajectory deviate away from the
designed orbit S
- Dipole error

- Quadrupole misalignment

Assuming a circular ring with a single dipole

error, closed orbit then becomes:

ex(9)0_ & x(s)0 @00
gxl(S)B — M(S’SO)[M(SO’S)gx' =+ g T]



Closed orbit: single dipole error

» Let’ s first solve the closed orbit at the location where the
dipole error is

@x(SO)('.j_M +C t'fx(So)('.j_l_a?OC:)
gx'(SO)B_ (S5 ’SO)gx'(So)B 8675

x(50) = B.(50) 5 n" o C0sP0.

_ q B
x(s) = \/bx (s,)0.(s) 25inpO. COS[_y(S,SO) ,OQx]

» The closed orbit distortion reaches its maximum at the
opposite side of the dipole error location




Closed orbit distortion

» In the case of multiple dipole errors distributed around the
ring. The closed orbit is

_ S By 9 _
X(S)—x/bx(S)? b, (s;) 2sin pO. cosPyA(s;.s0) — PO, ]

» Amplitude of the closed orbit distortion is inversely
proportion to sinTiQ,

- No stable orbit if tune is integer!



Measure closed orbit
SLAC

» Distribute beam position monitors around ring.

crhit [am]




Control closed orbit

» Minimized the closed orbit distortion.

» Large closed orbit distortions cause limitation on the
physical aperture

» Need dipole correctors and beam position monitors
distributed around the ring

» Assuming we have m beam position monitors and n
dipole correctors, the response at each beam position
monitor from the n correctors is:

Xi = \/@é\@ ZSi:LQx COS[J/(SﬂSo) = pr]



Control closed orbit

» Or, gx,0 &g
¢ - (D
G125 = (1) 72
' ¢
§x,0 84,0

» To cancel the closed orbit measured at all the bpms, the
correctors are then

£q,0 2 x, 0
¢\ - ¢ -
¢+ (M'l)Q T2
'E '



Quadrupole errors

» Misalignment of quadrupoles
— dipole-like error: kx

— results in closed orbit distortion

» Gradient error:
- Cause betatron tune shift

- induce beta function deviation: beta beat



Tune change due to a single gradient error

Suppose a quadrupole has an error in its gradient, i.e.

M:(l o){ 1 OJZE 1 oJ( 1 Oj
-kl 1 -(kl+Dkl) 1 -kl 1 )\ -Dk 1

(COS 2pr0 + ax,so Sln szxO) bx,sO Sln 2pr0
M(s+C,s) = 1+ a° ( 10 ]

X,80

sin2pQ., (cos2pQ,,-a,., sin2pQ,) \ -Dki 1

1
C0s2p(Q, +00) = TH(M(s+Cis) 0, = b, Dk
With multiple errors, the corresponding tune shift is

1 1
6Qx = —2iBxiAkil , and 6Q, = —2,; B, ;Ak;l



Beta beat

In a circular ring with a gradient error at s0, the tune shift is
So
M (s+C,s)=M(s,s,) L 0 M (54,5)
-Dikl 1

b (s)sin2p0, = b,,(s)sIN2p0,, +
be (S)bx

Dkl > 080 [c0s(20,, + 21Dy, )]
Db b, (s5)
—— = Dkl —=2>2~_cos(2 +2|D
P 25iN2p0 . (2P0, +2|DY, 0 )

Unstable betatron motion if tune is half integer!



Beta beat

In a circular ring with multiple gradient errors,

b 2sin2pQ .,

DO ()= NPl S rprSn 1cos(2p0., +2 Dy |

I

Unstable betatron motion if tune is half integer!

Beta beat wave varies twice of betatron tune around the ring




Resonance condition

Tune change due to a single quadrupole error
1

COS[2p(Q.q + 0,)]= 0520,

b, , Dkisin2pQ.,

If O,=2k+ 1)% + ¢, the above equation becomes

cos[2p(0,, + Q)] <1+, Dide

and Qx can become a complex number which means the
betatron motion can become unstable



Resonance

ol A

Pl A

€—o€—p

Integer resonance Half Integer resonance



Resonance condition

(d
=

» In the absence of coupling between horizontal and vertical

k=(nx1)Q, ,
dipole 0 Qx,y=integer
quadrupole I 2Qx,y=integer
Sextupole 2 3Qx,y=integer
Octupole 3 4Qx,y=integer

» In the presence of coupling between horizontal and vertical

MQ. + NQ, =k




Tune diagram

i | * the resonance strength
decreases as the order
goes higher

¢,
* the working point should
be located in an area

n. between resonances

there are enough tune
space to accommodate
tune spread of the beam




3rd order resonance

Let's start with linear betatron motion
x = A\ B, cos Y,
= B, x' + a,x = —A/ B, Sin,

when ¢, = v, ¢ + x, where v, is the tune, and ¢ = f

Vxﬁx

Let a./B, be the betatron oscillation amplitude location s, and g, is
the local beta function, we then have

x = a [B29 ¢os Y, and p, = Pa(s )Sinl/Jx
Bo Bo
In the presence of a thin lens single sextupole, we have
Ax =0, Ax' = _ABl_ _Bl,2
Bp 2Bp

,’l

ABI
= Bubx" + axAx = =By = =B x?




3rd order resonance

since

Ax = Aa /Mcosdjx —a /Bx(s) siny, Ay, =0
Bo Bo
_ Bx(S) _. Bx(s) —_ B''l 2
Ap, = Ada /_Bo siny, +a / 8 cos, AP, = —pf, 255

this then leads to

vV BxPo B

Aa = Bp 2 x2sin P,
VBxBo Bl
Ay, = B);) > x% cos P,
with x? = a? f," cos? 1,, we then have
0

w

@_12&)(/&

2B
= 4a Bp ,30> 5 [sin(v,@ + x) + sin(3v,¢d + 3y)]



3rd order resonance

this then leads to the change of amplitude and phase

v _BPo B

Bp 2

v BxBo Bl

A, = Bp 24 x2 cos[vy + x]

x? sin[v,d + x]

with x? = a? %Cosz[vxqﬁ + x], we then have the change per turn

da 1 , P (ﬁx>
Z_—_q
dn 4 Bp\pf,

N W

B"l
2

[siny, + sin 3y, |

N w

B"l
2

dip, 1 Py ('Bx> [3cos i, + cos 3y, | + 2mv,

4 Bo

dn 4 Bp
when ¥, = v,.¢ + x, where v, is the tune, and ¢ = f 4

VaBx




3rd order resonance

In the neighborhood of 3 order resonance, i.e. 3v,y =k, v, = Vo + 6,
where k is the integer, § < 1, we can rewrite the above as

3

2B
> [cos 3V, sin 3y + sin 3v, ¢ cos 3]

3
Z;/i %a g; (,g())z BZ L [cos 3vyo¢ cos 3y — sin 3v,o¢ sin 3Y] + 2mv,
2 s
X 2B x 2 B
- s 5 - 2 0
da 1 , _
I 2% |A sin 3y + B cos 3Y]
ay

=2 [A cos 31 — Bsin 3y] + 2mv,



3rd order resonance

let Y =y — 2mnv,,, then
da 1

=28 2 [Asin 31 + B cos 3]

ap

T =24 |[Acos3y — Bsin3y] + 2nd

at the 3 order resonance, betatron motion becomes static

=0 |9 os1Ep 4 4] and p, = —a |2 B9 sin[£p + 4]
ﬂO 3 BO

Bx(s)
Bo

In its neighborhood, motion is with an amplitude of a and phase of 1),

B (s)

Bx(s) siny
0

Bo

hence we have X = a cosz/) and p, =



3rd order resonance

In the neighborhood of 3" order resonance, the betatron motion is

Bx(S)

; cosy, P, = —a Bx(s) siny
0

Bo

X =a

and its change per turn is
dX _%da . dy dpy _ Pyda _dy

dn adn Xdn' dn  adn ° dn

plug in the amplitude and phase equation, one then gets
dx a _, . - a ~ - _
) [X(ASlTl3l/J + BCOS31/J)] + 7 [px(Acos?ﬂ,b - Bsm3¢)] + 2716 P,

dp a - - a ~ ~

% =12 ['p'x (Asin31/1 + BCOS31/))] ~2 [X(Acos3lp — Bsin3lp)] — 2ndX

with v is small, so, sin3y ~ 3siny and cos3y ~ cosy
dx A
dn 4
dp, A B

O 2s2 _ 22140 2015 o~ _ 2551 _ ~
o 4[ 3p; — X ]+4[pxx 3xXp| — 2mdx

B
[—3%p + xp] + 7 [%% + 3p2] + 216 P,



3rd order resonance

Assuming B=0

d¥ A; e ~
- = 5 [—2Xp] + 216 p,
dpx _ A _%2] —
= =|-3p% | — 2%
. . d¥  dp,
The fixed points il 0 are ;
(’i — _8L6’ n — 0) ____x_,,_

A
(% — 4Tn6’ ﬁx — i\/§477t6)
The separatrix, i.e. the boundary
between stable and unstable region can
be given




3rd order res

onance

The fixed points
B 5

(X =—-=

41td
(x_ ’

~

Px =

The separatrlx, l.e. the boundary between
stable and unstable region can be given Px

47t6
x__

)2

~ ~

dpy

dn  dn

— O)
+\/—47T5

= (0 are

— = x+@) ]=O

And, the area of separatrix Is

4&Fﬁ

5%, where

NIUJ

Bo (Bx
A=
o G

) > on resonance

10




3rd order resonance

Stable condition

o
48+/3 |
Ept < Esp = A2 o \ unstablei /
where '
3 stable i stable
2 B I
A = Bo (ﬁx) on resonance  Qp: :
Bp ﬁo /2 SRR~ ————
Or QT'BS

€ ,
Qres R 481i/t— |A| < th < Qres 48\/_ |A|



Phase space: High order resonances
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