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Colliders with polarized beams

Polarized e+e- colliders

• As early as early 70s like ACO, VEPP-2

• Most are circular and the polarization was built up during the store 

time via Sokolov-Ternov effect (ST effect)

The difference of probability between the two scenarios allows the 
radiative polarization build up .  



• The ST induced radiative polarization buildup is given

𝑃 𝑡 = 𝑃𝑆𝑇(1 − e− ൗt 𝜏𝑆𝑇), 
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• For HERA, the estimated ST polarization buildup time for its 26.7 
GeV electrons is about 43 mins

In a planar circular accelerator

S. Mane et al, Spin-polarized 
charged particle bams



• In reality, the emission of a photon can yield a sudden change of 
the particle’s energy and induce a spin diffusion mechanism that 
leads to loss of polarization. The equilibrium polarization is the 
combination of the two effects
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and the subsequent polarization buildup time is
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In a planar circular accelerator



• The radiative polarization buildup in HERA

• Best achieved  polarization is around 75%
• Polarization buildup time ~ 1.5 hours

In a planar circular accelerator

J. Buon, J. P. Koutchouk, Polarization of Electron and Proton Beams



Spin Orbit Coupling

𝒅𝑺

𝒅𝒔
= 𝛀 𝑥, 𝑝𝑥, 𝑦, 𝑝𝑦, 𝑧, 𝛿 ෝ𝒏 × 𝑺

• stable spin direction ො𝑛, an invariant direction that spin vector aligns to, 
when the particle returns to the same phase space

ො𝑛 𝑰𝒛, 𝝓𝒛, 𝜽 = ෝ𝒏(𝑰𝒛, 𝝓𝒛 + 𝟐𝝅, 𝜽)

Here,   𝐼𝑧 and 𝜙𝑧 are the 6-D phase-space coordinates 𝑥, 𝑝𝑥, 𝑦, 𝑝𝑦, 𝑧, 𝛿

• For particles on closed orbit, stable spin direction can be computed 
through one-turn spin transfer matrix. ො𝑛 is also know as ො𝑛0

Thomas BMT Equation: (1927, 1959)
L. H. Thomas, Phil. Mag. 3, 1 (1927); V. 
Bargmann, L. Michel, V. L. Telegdi, Phys, 
Rev. Lett. 2, 435 (1959)
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Stable Spin Direction

- is function of phase space

- For particles on closed orbit, stable spin direction can be 
computed through one-turn spin transfer matrix.       is also know 
as 

- For particles not on closed orbit, since in general the betatron
tune is non-integer, the stable spin direction is no longer the 
eigen vector of one turn spin transfer matrix. Algorithms like 
SODOM[1,2],  SLIM[3], SMILE[4] were developed to compute the 
stable spin direction 

[1] K. Yokoya, Non-perturbative calculation of equilibrium polarization of stored electron 
beams, KEK Report 92-6, 1992

[2] K. Yokoya, An Algorithm for Calculating the Spin Tune in Accelerators, DESY 99-006, 1999
[3] A. Chao, Nucl. Instr. Meth. 29 (1981) 180
[4] S. R. Mane, Phys. Rev. A36 (1987) 149
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Stable Spin Direction

- Particles on a 20π mm-mrad
phase space

- Particles on a 40π mm-mrad 
phase space

D. P. Barber, M. Vogt, The Amplitude Dependent Spin Tune and The Invariant Spin Field 
in High Energy Proton Accelerators, Proceedings of EPAC98

green: anti-damping technique

red: stroboscopic 
averaging technique



Spin Orbit Coupling

𝒅𝑺

𝒅𝒔
= 𝛀 𝑥, 𝑝𝑥, 𝑦, 𝑝𝑦, 𝑧, 𝛿 ෝ𝒏 × 𝑺

• stable spin direction ො𝑛, an invariant direction that spin vector aligns to, 
when the particle returns to the same phase space

ො𝑛 𝑰𝒛, 𝝓𝒛, 𝜽 = ෝ𝒏(𝑰𝒛, 𝝓𝒛 + 𝟐𝝅, 𝜽)

Here,   𝐼𝑧 and 𝜙𝑧 are the 6-D phase-space coordinates 𝑥, 𝑝𝑥, 𝑦, 𝑝𝑦, 𝑧, 𝛿

• Spin tune 𝑄𝑠: # of spin precession in one orbital revolution
𝑄𝑠 = G𝛾

Thomas BMT Equation: (1927, 1959)
L. H. Thomas, Phil. Mag. 3, 1 (1927); V. 
Bargmann, L. Michel, V. L. Telegdi, Phys, 
Rev. Lett. 2, 435 (1959)
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Depolarizing mechanism in a synchrotron

• For particles not on closed orbit, since the betatron tunes are typically 
non-integer, ො𝑛 can be significantly away from ො𝑛0 when 

𝑄𝑠 = 𝑘 + 𝑘𝑥𝑄𝑥 + 𝑘𝑦𝑄𝑦 + 𝑘𝑧𝑄𝑧

where 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 are horizontal, vertical and synchrotron    

tunes, respectively.

• These resonances contribute to the depolarization time and result to 
much less equilibrium polarization



Depolarizing mechanism in a synchrotron

x

y

z

beam

Initial 
x

y

z

beam

1st full betatron 
Oscillation period 

x

y

z

beam

2nd full betatron 
Oscillation period 

xB


xB


xB


• horizontal field kicks the spin vector away from its vertical direction, 

and can lead to polarization loss



Depolarizing mechanism in a synchrotron

• For particles not on closed orbit, since the betatron tunes are 
typically non-integer, ො𝑛 can be significantly away from ො𝑛0 when 

𝑄𝑠 = 𝑘 + 𝑘𝑥𝑄𝑥 + 𝑘𝑦𝑄𝑦 + 𝑘𝑧𝑄𝑧

where 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 are horizontal, vertical and synchrotron    

tunes, respectively.

• These resonances contribute
to the depolarization time 
and result to much less 
equilibrium polarization

• Sources of these resonances
• Miss-alignment of quadrupole
• Devices that deviate ො𝑛 from ො𝑛0
• Other high order fields 

VEPP-2
SPEAR

DORIS

PETRA

HERA
LEP



Overcome depolarizing mechanism

• In general, the effect of these resonances grows with energy. For 
planar electron storage rings, a simply scaling law*

𝑝𝑒𝑞 ≈
92.4%

1+𝛼2𝐸2

Where 𝛼 is the lattice related factor 

• To overcome these resonances in a storage ring, it is critical to 
either break the resonance condition such as utilizing Siberian 
snakes, or adapt the lattice optics to minimize the spin orbit 

coupling strength 𝛾 𝜕 ො𝑛

𝜕𝛾

2

~ 1 + 𝐺𝛾 2σ𝑘 𝑐𝑘
2/ 𝐺𝛾 − 𝑘 2 via spin matching

➢ Strong spin matching: full spin transparent at all harmonics
o Practically very difficult

➢ Harmonic spin matching: minimize the driving term at the nearby harmonics
o Has been implemented in various rings

* S R Mane, Yu M Shatunov and K Yokoya, Spin-polarized charged particle beams in high-

energy accelerators, Rep. Prog. Phys. 68 (2005) 1997–2265



Achieved Performance of Polarized e Beams

E [GeV]

P [%]

A Brief History of the LEP Collider, R. Assmann, M. Lamont, S. Myers for the LEP team 



HERA polarization

• HERA  was the 1st high energy collider, that employed local spin 

rotators to provide longitudinally polarized electron

• A spin rotator consists of a sequence of horizontal and vertical orbit 

correctors that interleaves with each other to precess spin vector from 

vertical to longitudinal



HERA polarization

• A spin rotator induces large orbital excursions in both planes and tilts the 

ො𝑛 away from vertical



HERA polarization

Vertical orbital bump ~ 20mm



HERA polarization

• A spin rotator induces large orbital excursions in both planes and tilts the 

ො𝑛 away from vertical

• Spin matching to make the section between spin rotators spin transparent to the  

1st order

• In addition, it is also critical to spin match at the entrance and exit of the rotator, 

respectively

Vertical orbital bump ~ 20mm



HERA polarization

• With the HEAR mini-rotator

•Polarization was later-on improved to 65% after a dedicated 

spin-match optics was implemented



HERA polarization

• With 3 pairs of rotators



Colliders with polarized beams

Polarized hadron colliders:

• RHIC@BNL: polarized protons

Unlike the e+e- colliders, polarized beam starts from the source, 

and polarization need to survive through acceleration chain

• Polarized ion source

• Pre-Injector: LINAC, booster

• Injector

• Collider 
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Overcoming Depolarizing Resonance

Harmonic orbit correction
to minimize the closed orbit distortion at all imperfection 

resonances
Operationally difficult for high energy accelerators

Tune Jump
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Tune jump
⚫ Operationally difficult because 

of the number of resonances

⚫ Also induces emittance blowup 
because of the non-adiabatic   
beam manipulation



rotates spin vector by an angle of <180o

Keeps the spin tune away from integer
Primarily for avoiding imperfection resonance
Can be used to avoid intrinsic resonance as demonstrated 

at the AGS, BNL.

Partial Siberian Snake
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Dual partial snake configuration

- For two partial snakes apart from each other by an angle 
of θ, spin tune the becomes

• Spin tune is no-longer integer, and stable spin direction is also 
tilted away from vertical

• The distance between spin tune and integer is modulated with 
Int[360/θ]. For every integer of Int[360/θ] of Gγ, the two partial 
snakes are effectively added. This provides a larger gap between 
spin tune and integer, which can be wide enough to have the vertical 
tune inside the gap to avoid both intrinsic and imperfection 
resonance

• Stable spin direction is also modulated
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Spin tune with two partial snakes

Courtesy of T. RoserSpin tune
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RHIC Intrinsic Spin Depolarizing Resonance



- A magnetic device to rotate spin vector by 180o

- Invented by Derbenev and Kondratanko in 1970s [Polarization 
kinematics of particles in storage rings, Ya.S. Derbenev, A.M. 
Kondratenko (Novosibirsk, IYF) . Jun 1973. Published in 
Sov.Phys.JETP 37:968-973,1973, Zh.Eksp.Teor.Fiz 64:1918-1929]

- Keep the spin tune independent of energy

Full Siberian Snake



Principle of full Siberian snake

❑ Use one or a group of 
snakes to make the spin 
tune to be at ½
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❑ Break the coherent build-
up of the perturbations on 
the spin vector



Snake Depolarization Resonance

- Condition

- even order resonance
⚫ Disappears in the two-snake case if the closed orbit is perfect

- odd order resonance
⚫ Driven by the intrinsic spin resonances
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Snake resonance observed in RHIC
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How to avoid a snake resonance?

- Adequate number of snakes

is the snake axis relative to the beam direction

- Minimize number of snake resonances to gain more tune 

spaces for operations

Nsnk > 4 ek,max Qs = (-1)kfk
k=1

Nsnk

å
fk

He-3 with dual snake He-3 with six-snake



Avoid polarization losses due to snake resonance

- Adequate number of snakes

is the snake axis relative to the beam direction
- Keep spin tune as close to 0.5 as possible
- Source of spin tune deviation
- Snake configuration
- Local orbit at snakes as well as other spin rotators. For RHIC, 

- Source of spin tune spread
- momentum dependence due to local orbit at snakes 

• equalize the dispersion primes at both snakes 

- betatron amplitude dependence

angle between two snake axes
H orbital angle 
between two snakesDQs =

Df

p
+ (1+Gg )

Dq

p

Nsnk > 4 ek,max Qs = (-1)kfk
k=1

Nsnk

å
fk



How to avoid a snake resonance?

- Adequate number of snakes

- Keep spin tune as close to 0.5 as possible

- Precise control of the vertical closed orbit

- Precise optics control
– Choice of working point to avoid snake resonances
– Minimize the linear coupling to avoid the resonance due to 

horizontal betatron oscillation



Precise Beam Control

• Tune/coupling feedback 
system: acceleration close 
to 2/3 orbital resonance

• Orbit feedback system: 
rms orbit distortion less 
than 0.1mm
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RHIC Polarization Performance

pp@100 GeV

pp@205GeV pp@250GeV

pp@255GeV

• Commissioning of OPPIS, snakes, rotators

• Operation modes developments

• Improvement of injectors, beam controls 

and polarimeters



RHIC, the world’s 1st high energy pp collider

https://www.agsrhichome.bnl.gov/RHIC/Runs/



Beam-beam Effect on Polarization

- Beam-Beam force on spin motion 
- For a Gaussian round beam, particle from the other beam sees 

• beam-beam parameter 0.01
• beam emittance 15π mm-mrad
• beta*=0.7m and beam energy at 

Gγ=487

The effect is much weaker than the 
spin perturbations from the lattice

E =
qN

2pe0lr
[1- exp(-

r2

2s 2
)]r̂ B =

1

c
b ´E

Distance to the beam center[σ]



Polarization Performance and Beam-beam

- Beam-Beam induces tune shift of                       , as well as 
incoherent tune spread

- Both HERA and LEP observed the beam-beam effect on the 
electron beam polarization

- RHIC has observed very mild to moderate polarization loss 
during store

x =
Nr0b

*

4pgs 2



Summary

⚫ Polarized beams have been successfully used for exploring high 

energy particle and nuclear physics

⚫ The upcoming EIC, as well as future high energy collider proposals 

(FCC-ee, ILC, CEPC, etc) requires

⚫ High luminosity with high polarized lepton and hadron beams

⚫ Polarized beams at very high energy 

⚫ The challenges ahead
⚫ Novel techniques in overcoming depolarizing effects

⚫ Existing spin orbit tracking and simulation codes, i.e. SLIM, 
SITROS, SLICKTRACK, PTC@Bmad, zgoubi etc met challenges 
in balancing computation power and accuracy

⚫ Innovative spin orbit tracking and simulation such as the latest 

discovery of a complete system of spin-orbit stochastic ODEs by K. 

Heinemann et al

➢ More robust and fast spin matching algorithms

⚫ Novel techniques in spin manipulation


