

CFNS Summer School 2021 Accelerator Physics for EIC.

Mei Bai, SLAC

August 17, 2021

Content

- Introduction and accelerator fundamental
 - Overview of US EIC current design
 - Accelerator physics fundamentals
- Collider accelerator physics
 - Luminosity, beam-beam effect
- Spin dynamics
 - Spin dynamics in circular accelerators

Synchrotron radiation and its applications

History

Was first observed in a synchroton in 1947 by Frank Elder, Anatole Gurewitsch, Rober Langmuir and Herb Pollok. The synchrotron belonged to GE and was built in 1946 in New York State.

Initially, this was considered a problem due to the fact this makes the acceleration less efficient

51 40

General Electric synchrotron accelerator built in 1946, the origin of the discovery of synchrotron radiation. The arrow indicates the evidence of radiation.

Static charge

moving charged particle

SLAC

Moving charge w constant speed

Moving charge in a Circular motion

History

- in 1897 Joseph Larmor derived the expression for the instantaneous total power radiated by an accelerated charged particle. $P = \frac{q^2}{6\pi\varepsilon_0 c^3} a^2$ Larmor Power

SLAC

1898 Liénard:

ELECTRIC AND MAGNETIC FIELDS PRODUCED BY A POINT CHARGE MOVING ON AN ARBITRARY PATH

(by means of retarded potentials)

Accession of	and a strategy of the strategy
 Mild Furtherner is (East Representation, Works in Trans. Market in Protoco in (2019), 40 8. 001124. Portugate a "East starting of a foreign. Market in Protoco. 4 - Protoco in Sciences, Market in (Protoco in Control of a Reference in Protoco in Control of a Reference in Protocol in Control of Academic J. Reference in Protocol in Control of Academic J. Reference in Protocol in Control of Academic J. Reference in Protocol in Control of Academic Academic Information (2019). 	C.M. P. Diriguet. (In Classics
CHAMP ELECTRICI	E ET MAGNETIQUE
HOLD FOR THE COMPANY AND THE REAL PROPERTY.	THE OWNER AND ADDRESS OF ADDRESS
# 0+ http://def	the destruction of the destructi
Addressing options maps handput to the formula of a final product is similar to the transmer of a dispersion of the final product is similar to the transmer of the final product is the final produc	$\label{eq:response} \begin{split} & \text{horesen is a strategiese } \{ & \mathcal{H}_{1} \\ & \mathcal{H}_{2} \\ $
De va spiniste d'appendants un distant faci- liettent for estimates	2+ 2+ 2+ 2+ + +
$(\gamma_{1}, \gamma_{2}, \gamma_{2}) = \alpha_{1} \left[\frac{1}{\alpha_{1}} (\alpha_{1}, \gamma_{2}) + \frac{1}{\alpha_{2}} (\alpha_{1}, \gamma_{2}) + \frac{1}{\alpha_{2}$	Ourspress ways d'about 46 filmperion (m On mit gan is solution in plus génerais en la solution (
(* la serie et larere, L'éstauge desegui, t. 27., 2 et la la companya et series de la true mignet	$1 = \int \frac{d[e_{ij}(e_{ij}) - \frac{1}{2}\phi]}{d\phi} d\phi = 1$

- and in 1898 Alfred Lienard (before the relativity theory!) extended Larmor's result to the case of a relativistic particle undergoing centripetal acceleration in a circular trajectory

Radiation of a Moving particle

Lienard-Wiechert field

$$\vec{B}(\vec{r},t) = -\frac{\mu_0 q}{4\pi} \left[\frac{c\vec{\beta} \times \hat{n}}{\gamma^2 R^2 \left(1 - \vec{\beta} \cdot \hat{n}\right)^3} + \frac{\hat{n} \times \left[\hat{n} \times \left[\left(\hat{n} - \vec{\beta}\right) \times \vec{\beta}\right]\right]}{R \left(1 - \vec{\beta} \cdot \hat{n}\right)^3} \right]$$

$$\vec{E}(\vec{r},t) = \frac{q}{4\pi\epsilon_0} \left[\frac{\hat{n} - \vec{\beta}}{\gamma^2 R^2 \left(1 - \vec{\beta} \cdot \hat{n}\right)^3} + \frac{\hat{n} \times \left(\left[\hat{n} - \vec{\beta}\right] \times \vec{\beta}\right)}{cR \left(1 - \vec{\beta} \cdot \hat{n}\right)^3} \right]$$

where $\frac{R\hat{n}}{\vec{\beta}}$ $T_{observer} = \left(1 - \hat{n} \cdot \vec{\beta}\right) T_{source}$

Radiation of a Moving particle

Poynting's vector of L-W field

$$\vec{s} \cdot \hat{n} = \vec{E} \times \vec{B} = \frac{q^2}{16\pi^2 \epsilon_0 c} \left[\frac{1}{R^2} \left| \frac{\hat{n} \times \left(\hat{n} - \vec{\beta} \right) \times \vec{\beta}}{\left(1 - \vec{\beta} \cdot \hat{n} \right)^3} \right|^2 \right]$$

SLAC

Energy radiated into per solid angle

$$\frac{dP}{d\Omega} = R(t')^2 [\vec{s}(t') \cdot \hat{n}(t')] \frac{dt}{dt'} = R(t')^2 [\vec{s}(t') \cdot \hat{n}(t')] \left[1 - \vec{\beta}(t') \cdot \hat{n}(t') \right]$$

$$= \frac{q^2}{16\pi^2\epsilon_0 c} \left[\frac{\left| \hat{n}(t') \times \left(\hat{n}(t') - \vec{\beta}(t') \right) \times \dot{\vec{\beta}} \right|^2}{\left(1 - \vec{\beta}(t') \cdot \hat{n}(t') \right)^5} \right]$$

Energy radiated into per solid angle,

Larmor's formula

Power of the radiation

$$P = \frac{q^2}{6\pi^2 \epsilon_0 c} \gamma^6 \left[\left| \dot{\vec{\beta}} \right|^2 - \left| \vec{\beta} \times \dot{\vec{\beta}} \right|^2 \right]$$
$$\therefore \vec{\vec{\beta}} = \vec{\vec{\beta}_{\parallel}} + \vec{\vec{\beta}_{\perp}}$$
$$P_{\parallel} = \frac{q^2}{6\pi^2 \epsilon_0 c} \gamma^6 \left| \vec{\vec{\beta}_{\parallel}} \right|^2, \text{ and } P_{\perp} = \frac{q^2}{6\pi^2 \epsilon_0 c} \gamma^4 \left| \vec{\vec{\beta}_{\perp}} \right|^2$$

SLAC

For synchrotron, the radiation power is

$$P = \frac{q^2}{6\pi^2\epsilon_0 c} \gamma^4 \left| \dot{\vec{\beta}} \right|^2 \text{ or } P = \frac{q^2 c}{6\pi\epsilon_0} \frac{(\beta\gamma)^4}{\rho^2}$$

• goes with beam energy to the power of 4th and bending radius of power of 2

Energy Loss due to Synchrotron Radiation

For a dipole

$$U_0 = \frac{4\pi r_e}{3(m_0 c^2)^3} \frac{E_0^4}{\rho} = C_{\gamma} \frac{E_0^4}{\rho}$$

SLAC

Energy loss per turn

$$U_0 = \oint P_{sR} dt$$
, where $P_{sR} = \frac{2cr_e}{3(mc^2)^3} \frac{E^4}{\rho^4}$ and $r_e = \frac{q^2}{4\pi\epsilon_0 mc^2}$

And the average power is

$$\langle P_{SR} \rangle = \frac{U_0}{T_0} = \frac{4\pi c r_e}{3(m_0 c^2)^3} \frac{E_0^4}{\rho L}$$
 where *L* is the ring circumference

Synchrotron Radiation Spectrum

- Radiation is emitted in a cone of angle $\frac{1}{\nu}$
- Retarded time period is $\Delta t_{ret} \approx \frac{\rho}{\gamma c}$
- Time period by observer is

$$\Delta t_{obs} = \Delta t_{ret} \frac{dt_{obs}}{dt_{ret}} = \frac{1}{\gamma^2} \Delta t_{ret}$$

And the frequency

$$\omega = \frac{1}{\Delta t_{obs}} = \frac{\gamma^3 c}{\rho}$$

Synchrotron Radiation Spectrum

Radiation density is

$$\frac{d^{3}I}{d\Omega d\omega} = \frac{e^{2}}{16\pi^{3}\varepsilon_{0}c} \left(\frac{2\omega\rho}{3c\gamma^{2}}\right)^{2} \left(1+\gamma^{2}\theta^{2}\right)^{2} \left[K_{2/3}^{2}(\xi) + \frac{\gamma^{2}\theta^{2}}{1+\gamma^{2}\theta^{2}}K_{1/3}^{2}(\xi)\right]$$

Where
$$\xi = \left(\frac{\omega\rho}{3c\gamma^{3}}\right) \left(1+\gamma^{2}\theta^{2}\right)^{\frac{2}{3}}$$

Critical frequency: when $\xi \ge 1$, radiation power becomes negligible, i.e

$$\omega_c = \frac{3}{2} \frac{c}{\rho} \gamma^3 \approx \omega_{rev} \gamma^3$$

Critical angle

$$\theta_c = \frac{1}{\gamma} \left(\frac{\omega_c}{\omega} \right)^{1/3}$$

Synchrotron Radiation Spectral Density

Energy Loss due to Synchrotron Radiation

Energy Loss per turn (per particle)

$$U_{o,electron}(keV) = \frac{e^2 \gamma^4}{3\varepsilon_0 \rho} = 88.46 \frac{E(GeV)^4}{\rho(m)}$$

$$U_{o,proton}(keV) = \frac{e^2 \gamma^4}{3\varepsilon_0 \rho} = 6.03 \frac{E(TeV)^4}{\rho(m)}$$

Power radiated by a beam of average current I_b : to be restored by RF system

$$N_{tot} = \frac{I_b \cdot T_{rev}}{e}$$

$$P_{electron}(kW) = \frac{e\gamma^4}{3\varepsilon_0\rho}I_b = 88.46\frac{E(GeV)^4I(A)}{\rho(m)}$$

$$P_{proton}(kW) = \frac{e\gamma^4}{3\varepsilon_0\rho}I_b = 6.03\frac{E(TeV)^4I(A)}{\rho(m)}$$

Power radiated by a beam of average current I_b in a dipole of length L (energy loss per second)

$$P_{e}(kW) = \frac{e\gamma^{4}}{6\pi\varepsilon_{0}\rho^{2}}LI_{b} = 14.08\frac{L(m)I(A)E(GeV)^{4}}{\rho(m)^{2}}$$

of photons emitted

Since the energy lost per turn is

$$U_0 \sim \frac{e^2 \gamma^4}{\rho}$$

SLAO

And average energy per photon is the

$$\left\langle \varepsilon_{\gamma} \right\rangle \approx \frac{1}{3} \varepsilon_{c} = \frac{\hbar \omega_{c}}{3} = \frac{1}{2} \frac{\hbar c}{\rho} \gamma^{3}$$

The average number of photons emitted per revolution is

 $\langle n_{\gamma} \rangle \sim \gamma$

Synchrotron Radiation between facilities

LEP200 LHC SSC HERA VLHC Beam particle e+ eр р р р 95 Circumference 26.7 26.782.9 6.45 km TeV 0.1 7 20 0.82 50 Beam energy 0.54 0.072 0.05 Beam current Α 0.006 0.125 7 10⁵ 3000 Critical energy of SR eV 44 284 0.34 $1.7\,10^4$ 7.5 8.8 3 10⁻⁴ 800 kW SR power (total) 8 10-5 Linear power density 0.22 0.14 4 W/m 882 s⁻¹ m⁻¹ 1 10¹⁷ 6.6 10¹⁵ 3 1016 $2.4\,10^{16}$ **Desorbing photons** none

Synchrotron Radiation Effect on Beam Dynamics

Energy loss due to synchrotron radiation

$$U_{o} = C_{\gamma} \frac{E^{4}}{\rho(m)}; \quad C_{\gamma} = \frac{4 \pi r_{0}}{3 (m_{0} c^{2})^{3}}$$

RF system needs to restore the lost energy per turn

$$\Delta E = U_0 = eV_0 \sin(\varphi_s)$$

SLAC

Longitudinal radiation damping

$$U = U_0 + w\Delta E \qquad \tau = \alpha_c T_0 \frac{\Delta E}{E} \implies \frac{d\tau}{dt} = \alpha_c \frac{\Delta E}{E}$$
$$\frac{d\Delta E}{dt} = \frac{eV(\tau) - U}{T_0} = \frac{eV_0 \sin(\omega_{rf}\tau + \varphi_s) - U}{\sigma_s^2 T_0} = \frac{1}{T_0} \left(eV_0 \omega_{rf} \cos \varphi_s - w\Delta E \right)$$
$$\tau'' + \frac{W}{T_0}\tau' - \frac{\alpha_c eV_0 \omega_{rf} \cos \varphi_s}{T_0 E} \tau = 0 \implies \tau(t) = A e^{-\frac{w}{2T_0}t} \cos(\omega_s t - \chi)$$

Synchrotron Radiation Effect on Beam Dynamics

Damping time

$$\tau_{s} = \frac{2T_{0}}{w}; \quad and \quad w = \frac{dU}{dE}$$

$$U = \oint p_{sr}dt = \oint p_{sr}\left(1 + \frac{x}{\rho}\right)ds = \oint p_{sr}\left(1 + \frac{D}{\rho}\frac{\Delta E}{E}\right)ds; \quad p_{sr} = \frac{cC_{\gamma}}{2\pi}\frac{E^{4}}{\rho^{2}}$$

$$dU = \int \left[e_{sr}p_{m} - e_{sr}p_{m}DdB - p_{m}D \right] = 0$$

$$\frac{dU}{dE} = \frac{1}{c} \oint \left\{ 2\frac{p_{sr}}{E} + 2\frac{p_{sr}}{B}\frac{D}{E}\frac{dB}{dx} + \frac{p_{sr}}{E}\frac{D}{\rho} \right\} ds$$
$$= \frac{U_0}{E} \left[2 + \frac{1}{cU_0} \oint \left\{ Dp_{sr} \left(\frac{1}{\rho} + \frac{2}{B}\frac{dB}{dx}\right) \right\} ds \right] D$$
$$T_s = \frac{2T_0}{W} = \frac{2T_0E}{U_0(2+D)}$$

Transverse Damping

Challenges of Electron Storage Rings

Figure of merit of a storage ring synchrotron radiation source

SLAC

• Photon flux
$$\dot{N} = \int \dot{n}(\omega)d\omega = \frac{15\sqrt{3}}{8} \frac{P}{\hbar\omega_c}$$

 $\dot{n}(\omega) = \frac{1}{\hbar\omega} \frac{dP}{d\omega} = \frac{P}{\omega\omega_c} \frac{9\sqrt{3}}{8\pi} \frac{\omega}{\omega_c} \int_{\frac{\omega}{\omega_c}}^{\infty} K_{5/3}(x)dx$
• Critical frequency $W_c = \frac{3}{2} \frac{c}{r} g^3$

- Brightness
 - Brightness = Photons per sec per mm² per mrad² per BandWidth
 - The smaller beam emittance, the brighter the light
- Stability
 - Beam lifetime
 - Orbit stability

Beam emittance in an electron storage ring is determined by synchrotron radiation induced damping as well as quantum excitation

The energy loss due to the emitted photon excites a horizontal betatron oscillation around the closed orbit corresponding to its new energy, aka quantum excitation

As a combination of damping and quantum excitation

$$\frac{d\epsilon_x}{dt} = -\frac{2\epsilon_x}{\tau_x} + \frac{2}{j_x\tau_x}C_q\gamma^2 \frac{I_5}{I_2}, C_q = \frac{55}{32\sqrt{3}}\frac{\hbar}{mc} \simeq 3.832x10^{-13} \text{m}$$

and
$$j_x = 1 - \frac{I_4}{I_2}$$
, $I_4 = \oint \frac{\eta_x}{\rho} \left(\frac{1}{\rho^2} + 2 \frac{\frac{\partial B_y}{\partial x}}{B\rho} \right) ds$, $I_5 = \oint \frac{H_x}{|\rho^3|} ds$, where

$$H_x = \gamma_x \eta_x^2 + 2\alpha_x \eta_x \eta_{px} + \beta_x \eta_{px}^2$$

Andy Wolski, Storage Ring Design

Natural Emittance

$$\frac{de_x}{dt} = -\frac{2e_x}{t_x} + \frac{2}{j_x t_x} C_q g^2 \frac{I_5}{I_2} = 0 \qquad e_x = C_q \frac{g^2}{j_x} \frac{I_5}{I_2}$$
$$I_5 = \oint \frac{H_x}{|\rho^3|} ds \qquad H_x = g_x h_x^2 + 2a_x h_x h_{px} + b_x h_{px}^2$$

Minimize H function to obtain small natural emittance

• Lattice choices: FODO, DBA, TBA, MBA

Theoretical Minimum Emittance by minimizing I_5 w.r.t to dispersions and twiss parameters

$$e_{TME} \gg \frac{1}{12\sqrt{15}} C_q g^2 q^3$$

This requires the dispersion reaches its minimum in the middle of the dipole.
 Not practical for light source

Andy Wolski, Storage Ring Design

Lattice	Minimum emittance	conditions
90o FODO	$\gg 2\sqrt{2}C_q g^2 q^3$	$\frac{f}{L} = \frac{1}{\sqrt{2}}$
137o FODO	$\gg 1.2C_q g^2 q^3$	Minimum for FODO
DBA	$\gg C_q g^2 \frac{1}{4\sqrt{15}} q^3$	at end of dipole $h_{x,px} = 0;$ $b_x \gg \sqrt{12/5L}; a_x \gg \sqrt{15}$
TME	$\gg C_q g^2 \frac{1}{12\sqrt{15}} q^3$	$h_{x,\min} \gg \frac{Lq}{24}; b_{x,\min} \gg \frac{L}{2\sqrt{15}}$
MBA	$ > C_q g^2 \frac{1}{12\sqrt{15}} \overset{\text{\tiny (B)}}{\underset{\text{\tiny (C)}}{\overset{\text{\tiny (C)}}}{\overset{\text{\tiny (C)}}{\overset{\text{\tiny (C)}}}{\overset{\text{\tiny (C)}}{\overset{\text{\tiny (C)}}}{\overset{\overset{ (C)}}{\overset{ (C)}}{\overset{ (C)}}{\overset{\overset{ (C)}}{\overset{ (C)}}{\overset{ (C)}}{\overset{ (C)}}{\overset{\atop (C)}}{\overset{ (C)}}{\overset{ (C)}}{\overset{\overset{ (C)}}{\overset{ (C)}}{\overset{\overset{ (C)}}{\overset{ (C)}}{\overset{ (C)}}{\overset{ (C)}}{\overset{ (C)}}{\overset{ (C)}}{\overset{ (C)}}{\overset{\overset{ (C)}}{\overset{ (C)}}$	2 < M < infinity

Orbit Stability

Unstable closed orbit results in effective emittance growth

SLAC

Many sources of orbit disturbance

- Ground motion
- Tidal motion
- power supply of steering magnets
- Etc.

Touschek Effect

can result in large longitudinal oscillations that exceed momentum acceptance or dynamic aperture of the machine most dominant lifetime limitation for low electron storage rings with low emittance

Touschek Lifetime

Is given by

$$\frac{1}{t} = -\frac{1}{N}\frac{dN}{dt} = \frac{r_e^2 cN}{8\rho S_x S_y S_z}\frac{1}{g^2 \left| d \right|_{\max}^3} D(u); \quad u = \overset{\mathfrak{A}}{\underset{e}{\varsigma}}\frac{\left| d \right|_{\max}}{g S_x}\frac{b_x}{g} \overset{\ddot{o}^2}{\overset{:}{\underset{e}{\varsigma}}}$$

and
$$D(u) = \sqrt{u} \stackrel{\acute{e}}{\overset{\circ}{e}} - \frac{3}{2} e^{-u} + \frac{u}{2} \stackrel{\circ}{0}_{u} \frac{\ln x}{x} e^{-x} dx + \frac{1}{2} (3u - u \ln u + 2) \stackrel{\circ}{0}_{u} \frac{e^{-x}}{x} dx \stackrel{i}{\underbrace{u}}_{\overset{\circ}{u}}$$

where $|\mathcal{O}|_{\max}$ is the momentum acceptance.

Most dominant lifetime limitation for low electron storage rings with low emittance

SLAO

Increase Touschek Lifetime

Careful choice of working point

Spring-8, M. Takao, et al, EPAX 2000, 1569

SLAC

Figure 3: Normalized beam lifetime as a function of rf voltage with different operation points. The dashed line indicates the expected lifetime from the rf bucket height.

Increase Touschek Lifetime

Improve dynamic aperture

• minimize non-linear driving terms of the lattice

Courtesy of J. Safranek

Mitigate Touschek Lifetime: Top-off Injection

Vacuum Quality*: 3.44 Ah

Top-off injection 5 mins, 500 mA beam current

History of Light Sources

- -Ist generation synchrotron radiation source
 - Between early 1960s and mid 1970s
 - Parasitic operation. Most machines were built for other applications including particle physics

SLAG

- Beam energy ranges from 180 MeV to 6 GeV
- Radiation ranges from UV to x-rays
- Brightness was compromised due to large beam emittance

1st Generation Synchrotron Radiation Sources

Year	Facility	Beam energy[GeV]	Radiation	Country
~1961	SURF (NBS)	0.18-0.25	UV	US
	Frascati Synchrotron	1.1	UV	Italy
1962	CEA (Saclay)	2-3	X-rays	France
~1965	SOR	0.75		Tokyo
	DESY	6	100 keV x-rays	Germany
1967	Tantalus (Wisconsin)	0.24		US
1971	ACO	0.54		Orsay
1974	SURF II (NBS)	0.24		US
	SOR	0.3(design for SR)		Japan
	SPEAR (SLAC)	2.5	1 st X-ray beamline	US
1975s	VEPP-3 (INP)	2		Russia
	DCI (Orsay)	1.9		France
	DORIS (DESY)	4.5		Germany
	SPEAR (SLAC)	4.5		US
	CESR (CHESS)	6		US

History of Light Sources

SLAC

-2nd generation synchrotron radiation source

- Dedicated operation for synchrotron radiation

Year	Facility	Beam energy[GeV]	Radiation	Country
~1981	SRS	2		US
1982	VUV (NSLS)	0.7	UV	Italy
	BESSY (Berlin)	0.8	X-rays	France
	NSRL (Hefei)	0.8		Tokyo
1983	Photon Factory	2.5	100 keV x-rays	Japan
1984	NSLS x-ray	2.5		US
	SuperACO(LURE)	0.8		Orsay
1985	MAX-lab (Lund)	0.55		Sweden
	Aladdin (Wisconsin)	1		US
1990	SPEAR 2 (SSRL)	4.5	dedicated	US

2nd Generation Synchrotron Radiation Source

BESSY, Berlin

History of Light Sources

-3rd generation synchrotron radiation source

- Dedicated operation
- High brightness 10¹⁹ vs. 10¹⁶ for 2nd generation
- Low emittance I-20 nm-rad
- Insertion devices in addition to bending magnet radiations

ESRF

SPEAR 3 at SSRL

History of Undulators

1947: Ginzburg

1953: 1st mm-visible undulator built by Motz

1970s: started to be used in storage rings

- 1981: 1st permanent magnet undulator built by Halbach for SSRL
- 1987: ellipitical polarized undulator built at HASYLAB
- 1990: 6mm-gap undulator built at NSLS
- 1991: in-vacuum undulator used in Photon Factory
- 1993: adjustable phase undulator used in Stanford Synchrotron Radiation Lab

4th Generation: Free Electron Laser

- LCLS at SLAC, California, USA

LCLS, LCLS II and beyond

World-wide XFEL

-SLAC

	European XFEL	LCLS	LCLS-II, SCRF	SACLA	SwissFEL	PAL-XFEL	SHINE
Abbreviation for	European X-Ray Free-Electron Laser	Linac Coherent Light Source	Linac Coherent Light Source II	SPRing-8 Compact Free-Electron Laser	Swiss Free- Electron Laser	Pohang Accelerator Laboratory X-Ray Free-Electron Laser	Shanghai High Repetition Rate XFEL and Extreme Light Facility
Location	Germany	USA	USA	Japan	Switzerland	South Korea	China
Start of commissioning	2016	2009	2021	2011	2016	2016	2025
Accelerator technology	Super- conducting	Normal-conducting	Super- conducting	Normal- conducting	Normal- conducting	Normal-conducting	Super-conducting
Number of light flashes per second	27 000	120	1 000 000	60	100	60	1 000 000
Minimum wavelength of the laser	0.05 nm	0.15 nm	0.25 nm	0.08 nm	0.1 nm	0.06 nm	0.05 nm
Maximum electron energy	17.5 GeV	14.3 GeV	4 GeV	8.5 GeV	5.8 GeV	10 GeV	8 GeV
Length of the facility	3.4 km	3 km	3 km	0.75 km	0.74 km	1.1 km	3.1 km
Number of undulators	3	1		3	1	2	
Number of experment stations	6	5		4	3	3	
Peak brilliance	5 x 10 ³³	2 x 10 ³³ (2,75 x 10 ³⁴ with seeding)	1 x 10 ³²	1 x 10 ³³	1 x 10 ³³	1.3 x 10 ³³	1 x 10 ³³