ECCE Detector Concept and Software

Joe Osborn Oak Ridge National Laboratory August 19, 2021

What is ECCE?

- An international consortium of people working to develop a detector capable of delivering the full EIC science mission as outlined in the EIC Yellow Report
- Looking to reduce risk by utilizing existing detectors and infrastructure
 - Reinvest savings into detectors and reduce schedule/technical risks
- Ready by start of EIC operations!

- ECCE did not materialize out of the ether largely guided by the **EIC Yellow Report**
- How can we achieve the design requirements?

	Nomenclature	Tracking						Electrons and Photons			π/K/p		HCAL			
η		Resolution	Relative Momentun	Allowed X/X ₀	Minimum-p _T (MeV/c)	Transverse Pointing Res.	Longitudinal Pointing Res.	Resolution σ _E /E	PID	Min E Photon	p-Range	Separation	Resolution σ _E /E	Energy	Muons	
< -4.6	Low-Q2 tagger															
-4.6 to -4.0			Not Accessible													
-4.0 to -3.5		Reduced Performance														
-3.5 to -3.0	Backward Detector		σ _p /p ~		150-300			1%/E ⊕ 2.5%/√E ⊕ 1%	π suppression up to 1:10 ⁻⁴	20 MeV	≤ 10 GeV/c	≥ 3 σ	50%/√E ⊕ 10%	~500MeV	Muons useful for background suppression and improved resolution	
-3.0 to -2.5			0.1%×p⊕2%													
-2.5 to -2.0			σ _p /p ~ 0.02% × p ⊕ 1%													
-2.0 to -1.5						dca(xy) ~ 40/p _T	dca(z) ~ 100/p _T	2%/E ⊕ (4-8)%/√F	π suppression up to 1:(10 ⁻³ -10 ⁻²)	50 MeV						
-1.5 to -1.0						μm ⊕ 10 μm	µm ⊕ 20 µm	⊕ 2%								
-1.0 to -0.5	Barrel		σ _p /p ~ 0.02% × p ⊕ 5%	~5% or less	400	d==(==)	d = = (=)	2%/E ⊕ (12-14)%/√E ⊕ (2-3)%	π suppression up to 1:10 ⁻²	100 MeV	≤6 GeV/c		100%/√E ⊕ 10%			
-0.5 to 0.0						dca(xy) ~ 30/p _T μm ⊕ 5 μm	dca(z) ~ 30/p _T μm ⊕ 5 μm									
0.0 to 0.5																
0.5 to 1.0																
1.0 to 1.5	Forward Detectors		σ _p /p ~ 0.02% × p ⊕ 1%		150-300	dca(xy) ~ 40/p _T	dec(=) ~ 100/c	dca(z) ~ 100/p _T μm ⊕ 20 μm ⊕ (4*-12)%/√E ⊕ 2%	$3\sigma e/\pi$ up to 15 GeV/c	50 MeV	≤ 50 GeV/c		50%/√E ⊕ 10%			
1.5 to 2.0						µm ⊕ 10 µm	uca(2) ~ 100/p _T μm ⊕ 20 μm 2 θ									
2.0 to 2.5																
2.5 to 3.0			σ _p /p ~													
3.0 to 3.5			0.1%×p⊕2%													
3.5 to 4.0	Instrumentation to separate charged particles from photons		Reduced Performance													
4.0 to 4.5			Not Accessible													
246	Proton Spectrometer															
~ 4.0	Zero Degree Neutral Detection															

Joe Osborn

How Did ECCE Start?

community's desires for a detector based on the (community developed)

ECCE Geometry ELECTRON ENDCAP

ectron

Tracking: Si discs + Large area μRWELL **Electron Detection:**

- Inner: PbWO4 crystals (reuse some)
- Outer: SciGlass (backup PbGl)

h-PID: mRICH & AC-LGAD **HCAL:** Fe/Sc (STAR re-use)

CENTRAL BARREL

HADRON ENDCAP

Tracking: Si discs + Large area μRWELL PID: dual-RICH & AC-LGAD Calorimetry: Standard Pb/ScFi shashlik (PHENIX re-use) Long. sep. HCAL (other options under study)

ECCE Geometry

Tracking: Si discs + Large area µRWELL **Electron Detection:**

- Inner: PbWO4 crystals (reuse some)
- Outer: SciGlass (backup PbGl) h-PID: mRICH & AC-LGAD **HCAL:** Fe/Sc (STAR re-use)

ECCE Geometry

Tracking: Si discs + Large area μRWELL **PID:** dual-RICH & AC-LGAD **Calorimetry:** standard Pb/ScFi shashlik (PHENIX re-use) long. sep. HCAL (other options under study)

HCal

EM-

Cal

ECCE Geometry

Tracking: MAPS Si + µRWELL **Electron PID:** SciGlass (alt: PbGl or W(Pb)/Sc shashlik) (plus instrumented frame) **h-PID:** hpDIRC & AC-LGAD **HCAL:** Fe/Sc (sPHENIX re-use)

Tracking

- Baseline layout: ullet
 - Barrel: Silicon tracker (2 double layers) + AC-LGADS & µRwell around DIRC
 - Endcaps: Silicon disks + AC-LGADS & µRwell around calorimeters
- Design optimization and decisions ongoing!
 - AI/ML pipeline for optimizing detector design

Tracking

- Still exploring optimal design with various options
 - e.g. all silicon design, etc.
- Importance of modular software can easily add/remove different designs to test functionality

Detector Optimization with ML

- Utilize machine learning to optimize detector design
- Detector design parameters can be improved, leading to noticeable improvement in detector performance

Particle Identification

p (GeV/c)

- EIC Yellow Report provides a comprehensive picture for PID detectors and physics requirements
- Combination of Cerenkov (RICH, DIRC) and time of flight (TOF)

Particle Identification

- EIC Yellow Report provides a comprehensive picture for PID detectors and physics requirements
- Combination of Cerenkov (RICH, DIRC) and time of flight (TOF)

Joe Osporn

Calorimetry

- Reuse existing outer sPHENIX and STAR forward HCal
- Reuse existing PHENIX Shashlik EMCal
- Build new homogenous EMCals
- Build new inner HCal
- Build new forward HCal

- Exploring several options for EMCal in electron going direction
 - e.g. PbWO₄ vs. scintillating-glass towers
- Reuse STAR forward HCal (with upgraded electronics) for cost/risk mitigation

Central Calorimetry

- Central EMCal implemented as scintillating glass towers
- Projective in both η and φ to reduce channeling and improve resolution
 - Alternative re-use sPHENIX 2D Spaghetti-calorimeter (SPACAL) with upgraded readout

Central Calorimetry

- Re-use sPHENIX iron-scintillating tile calorimeter
 - Mitigate cost/risk and upgrade readout with new silicon photomultipliers (SiPMs)
- Inner HCal in steel support frame from BECAL

Hadron Going Calorimetry

- Good calorimetry in hadron going direction essential for (e.g.) SIDIS physics
- FEMC Pb scintillating
 Shashlik Calorimeter
 - Reuse PHENIX EMCal, upgraded SiPM readout
- LFHCal Iron-scintillating tile calorimeter

Forward and Backward Detectors

- Essential to EIC physics program
- Diffractive tagging and low Q² physics
- Development of a variety of farforward and far-backward detectors ongoing

Example: ZDC

- Example of ongoing development -Zero Degree Calorimeter (ZDC)
 - Sandwiched layers of silicon + PbWO₄, tungsten+silicon, and leadscintillator
- Used for tagging e.g. large η neutron production
- Additional ongoing studies with roman pots, low-Q² taggers, and more

Software

- Distribute Singularity container nightly for software access anywhere, no account required
- Actively maintained open source repository
- Complete <u>tutorial</u> available: start from scratch to performing analysis in ~20 minutes

- 1. Physics groups generate physics Monte Carlo events
- 2. Detector groups optimize specific subdetectors in Geant4
- 3. Simulation groups assemble full detector in Geant4
- 4. Computing groups develop software for job processing and monitoring to produce data
 - Data stored on disk at BNL and JLab

- Metadata is logged so that results are entirely reproducible
- All information used to produce the simulation data is stored in conjunction with the data itself

====== Your production details ====== Production started: 2021/07/25 17:10 Production site: BNL Production Host: spool0680.sdcc.bnl.gov ECCE build: prop.2 ECCE macros branch: production ECCE macros hash: c131177 PWG: SIDIS Generator: pythia6 Collision type: ep-10x100 Input file: /gpfs02/eic/DATA/YR_SIDIS/ep_10x100/ep_noradcor.10x100_run001.root+ Output file: DST_SIDIS_pythia6_ep-10x100_000_0000000_05000.root Output dir: /gpfs/mnt/gpfs02/eic/DATA/ECCE_Productions/MC/prop.2/c131177/SIDIS/pythia6/ep-10x100 Number of events: 5000 -Skip: 0 🛶 Seeds: Fully and uniquely defines seed 1322570549 (plus more) md5sum:

01da8efd4555739dfa18fd96ee5b6a36

Conclusions

- ECCE software framework is well validated and has produced 150M ep collision simulation events for users to analyze
 - Simulation and software are used to optimize detector design
- Many different detector technologies implemented utilizing a variety of software packages
- Software is ESSENTIAL to the scientific process!
 - No detector simulations or data to analyze without software!
 - Necessary for any EIC experiment to guide and optimize detector designs

