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Hadron Polarimetry at EIC

Thanks to Bill Schmidke (BNL) for much of this material
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Hadron Polarimetry for EIC

* New set of polarimeters needed for electrons at EIC

« EIC will make use of existing set of polarimeters that were used at RHIC for protons
— 200 MeV polarimeter just after polarized source
— p-Carbon polarimeter in AGS
— Hydrogen Jet polarimeter for absolute measurement in ring (IP12)
— p-Carbon polarimeter for fast, relative measurements in ring (IP12)
— Additional p-Carbon polarimeter near experiment IP
— Improvements for polarimeters in ring needed/planned
— Extend existing polarimeters for use with light ions - 3He (D)

* Requirements similar to electron beam

— Bunch-by-bunch polarization
— Rapid measurements
— Ability to measure polarization profiles (longitudinal and transverse)
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Hadron polarimeters at EIC
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Measurement of Absolute Polarization

Electron polarimetry benefits from known QED processes (Compton, Mgller scattering)
- No equivalent processes for hadrons to measure absolute polarization = analyzing
power a priori unknown

Use of polarized target with polarized beam bypasses need to determine analyzing
power from first principles
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Hydrogen-Jet Polarimeter

atomic beam

H-Jet Polarimeter installed at IP12
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— Uses of elastic p-p scattering in the Coulomb- mnl,f;,wf.'?:r"-f: [ ? S

nuclear interference (CNI) region J [ ,  Pproton

- Polarized atomic H source, 1.2-1012 IPJ J-L_-’-‘ M e recail detector
atoms/cm?2 Loy = right

— Target polarization measured w/ Breit-Rabi \ ]

polarimeter, Py, ger = 96% beam . u :

—> Silicon strip detectors, 12 strips 3.75 mm pitch 6 lnner coll i

— H-Jet has achieved high precision at RHIC: ook P e

(dP/P),,=0.6%

- Measurements time consuming:

(dP/P) .t ~ 2% for 8 hour period Breit — Rabi
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Hydrogen-Jet Polarimeter

Elastic events identified via TOF-Kinetic energy correlation

- “Banana” plot

Silicon strip detectors read out with wave-form digitizers that
simultaneously provide energy and TOF information

Asymmetry extracted from “cross-ration” = reduces sensitivity

to left-right acceptance differences
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p-Carbon Polarimeter

p-Carbon polarimeter also uses elastic scattering in CNI

Ultra thin Carbon

region 1 ribbon Target
- Located about 70 m from IP12 (5 pg/cm?)
— Uses thin carbon ribbon 5
- Very low energy, recoiling carbon detected in silicon strip
detectors Si strip detectors

3 (TORE]

— Polarization extracted via L-R asymmetry

- Analyzing power requires cross-calibration with H-jet
polarimeter

2 p-Carbon polarimeters > vertical and horizontal target to

characterize beam profile

Nominal target size:

25cm - 10 - 50 nm Passed across beam & back

~2-5 sec. in beam each pass
lifetime: few - few hundred
passes




AGS and 200 MeV Polarimeters

AGS p-Carbon polarimeter similar to
RHIC p-Carbon polarimeter with slightly
different layout

—> Fast, relative measurements
- Verify beam polarization before
injection into EIC ring at ~ 25 GeV
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3 (TOF, Ep)

200 MeV Polarimeter located after linac
following polarized source
- Analyzing power well known from
measurements at I[UCF
Ay= 0.993+/- 0.003
— Total systematic error dP/P ~ 0.6%
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p-Carbon Polarimeter

Asymmetry extracted for Ny —N_
i ; ; each detector €=
Similar to H-Jet polarimeter elastic N4y 4+ N_
events selected via TOF-energy
correlation = banana plot Fit to azimuthal dependence gives polarization:
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Polarization Profile

| Intensity profile (arb. units) |

1

High rates + thin polarimeter target allows
measurement of beam polarization profile

0.6
0.4

0.2

— Target position relative to beam not known from

IIIIIIIlIIIl]IIIIIIII
!.P

stepper motors 0
- Position inferred from measurement of rate in [Polarization profile (arb. units) |
detector (beam profile): I(x) = e(-x*/6%peam) osll
—> Polarization profile plotted in units of Gy, osiy
- Useful to define ratio of profile sizes: ::
R=(Gbeam/cjpolarization)2 °:

Position (X/Gpeam)
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Polarization vs. Time
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Longitudinal Polarization Profile

In addition to transverse polarization profile, there is an apparent longitudinal profile
- Asymmetry changes for different time bins along the bunch

- Polarization lower at center of bunch

— Depolarizing beam-beam effect? Largest at t=0 (highest bunch intensity)

- Unexpected effect
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p-Carbon/H-Jet Normalization

H-jet measures polarization over a whole fill 2
current weighted average polarization for that

fill
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Normalize intensity-weighted average for p-Carbon
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Polarimetry Challenges at RHIC

 H-Jet target H, contamination Hz 107" atyy
* Target polarized H; l!et
* Molecular H, (unpolarized) leads to dilution
* Largest systematic until 2017 = estimate based on bench e
measurement Scatgering Chamber
e 2017 in situ measurements reduced systematic, but improvements — >

. . Beam
still possible 30 mm
* Backgrounds 15 mm

* Background from non-elastic events leak under signal — estimated
and subtracted
e Origin under study — limits H-jet systematic uncertainty
e Detector energy calibration
* Due to steep dependence of A vs. E, results very sensitive to this
calibration
e Target lifetime
e p-carbon ribbons survive a few 100 passes through beam
e 6 targets on ladder, but eventually need to replace (interrupts RHIC
operations) e E(Mev)
"~ JefferSon Lab
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Hadron Polarimetry Challenges at EIC

« EIC Hadron Polarimetry will make use of existing H-Jet and p-Carbon systems with
additional p-Carbon polarimeter near IP6

« EIC will have shorter bunch spacing than RHIC - challenges for identifying good
events

« EIC will have higher beam current - p-Carbon target will likely not survive in beam

 Light-ion polarimetry
— RHIC polarimeters designed for protons

— Similar processes can be used for light-ions (3He), but may be additional backgrounds from
breakup

— Deuteron beams not part of baseline, but are also of interest - analyzing power for
deuteron predicted to be much smaller than for p and 3He
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Bunch Spacing

RHIC — pC data (107 ns bunch spacing) EIC — (~10 ns bunch spacing)
O
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Smaller bunch spacing makes selection of good events via TOF-E correlation impossible
- Several bunches will overlap
- Impossible to cleanly identify elastic signal, remove background
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Backgrounds
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Bunch-spacing issues prevent clean removal of backgrounds
—> Fast particles — pions, photons up to a few GeV
— Background more than just a dilution — appears to carry non-zero asymmetry

H-Jet will have similar issues
18 .ggf_ﬂgon Lab



Background Simulations

Attempts have been made to better understand the
backgrounds using PYTHIA + GEANT4 simulation of
polarimeter

Simulation reproduces general features
—> Elastic correlation
- Signal/background

Strip 10

t (ns)

70

Strip 11

10
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Background Rejection

t.o.f. (ns)

Protons in general are stopped in Si detector

— Additional layer could be added to veto fast higher energy
particles

— Simulations suggest this would be effective

This can be tested in upcoming RHIC proton run
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p-Carbon Target Viability

Temperature estimate ( °C)
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Simulated temperature along target center = edge
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Carbon targets do not survive indefinitely at RHIC = close to rapid sublimation

Ribbon temperature (°C)

4,000

3,500

3,000

2,500

2,000

1,500

1,000

500

3642 °C (sublimation temp.)

-
=
-

0 0.5

1.5

X (mm)

— Estimated lifetime ~440 s, can be used for a few 100 measurements

— Consistent with observed lifetime

At EIC, targets are well into rapid sublimation (few seconds)

— Alternate target materials likely required

=== EIC 4x beam size
== RHIC Blue
RHIC Yellow

2227 °C (<22s lifetime)

Series6
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3He Breakup

Absolute polarimetry with polarized jet target h : h - ,
: ) . : h = helion, 3He
requires elastic scattering
: d = deuteron
—> Helion can breakup into d+p or n+p+p h 5 h - p = proton

N = neutron

Mass difference between h and (d+p) only 5 MeV = too small to resolve with target recoil detectors
- For elastic pp, nearest inelastic channel is single pion production, 140 MeV

Need to tag helion breakup fragments and reject from polarimetry analysis

Near threshold, breakup fragments travel colinearly with beam
— Tagging requires dipole to separate n/p/d
— Detectors placed at appropriate separation for each

Deuteron will face similar breakup issues; d=>p+n h

L V Ldrift
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Plans for Tests at RHIC

Background veto layer tests
— Some tests already done using H-Jet detector — results inconclusive
- Pursuing adding 2"9 layer to some of the p-Carbon detector planes

Helion breakup tagging

— DX dipole downstream of H-Jet
separates breakup
protons/neutrons from beam

— Tag with spare Zero Degree
Calorimeter (ZDC)

p-Carbon Target

- No good alternatives identified
yet, but any TBD options can be
tested in existing polarimeters

offerd
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Summary (Part 3)

RHIC has wealth of experience that will facilitate high precision hadron polarimetry

EIC will use existing RHIC hadron polarimetry techniques, but some improvements
required

Polarized jet target polarimeter will provide absolute calibration

p-Carbon polarimeters calibrated to jet polarimeter

Improvements needed for transition from RHIC to EIC

— Understand/suppress backgrounds - high bunch frequency makes it difficult to isolate
elastic signal

— Alternate p-Carbon target material
— Light breakup tagging

J)gfﬂ?son Lab



Compton Design

« Many Compton polarimeter requirements and specifications can be determined with
fairly simple calculations

* In the end, final, detailed design should be based on GEANT simulations, but a good
starting point can come from these simple calculations

« Examples:
— Laser power, entrance window size
— Luminosity for CW, pulsed lasers
— Measurement times
— Detector properties, sizes
— Systematics — helicity correlated beam motion

https://github.com/gaskelld/compton jupyter
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https://github.com/gaskelld/compton_jupyter

Laser entrance window

Assume G, = 100 um at collision point 60— g e i
- Determine laser size at entrance window = N § & F8e _
. . 50— aty, v o o oo mR
—> How big does the window need to be? - ey a2
. . - T g I lm =
Compatible with magnet apertures, vacuum 0E I o
pipe sizes? 30— [ vee. | [window
— S| | | | | NG M
- - 1 I \
o 20— i ] H—TI 5
2 = - I | e R\
y x 10— /,/‘/_ ‘ e | Q e beam
w(z) = w1+ | — : | N
ZR o— laser beam
~ | L i Exit window
-10— | i -
w=20 - ) )
_20: 1 I 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 |
60 70 80 90 100 110
Diffraction limited beam: 6 o’clock Z(m) 5 o’clock
2
W,
ZR —
)\ Laser enters vacuum ~ 6 m from IP
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Basic Kinematics

4a~y?

E ~ E asSer
K ! 1 + afz~=

1
‘= 1 + 47Elaser/me

Maximum for 8= 0 (photon along electron direction)

Angle at which E, = E /2 o
1 2 3 4 5 6 7 8 9 10 11

Beam energy (GeV)
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Cross Section and Analyzing Powers

2
do o 2 | PP0=a®) (1-p(+0a)
dp 0% 171 o(1 —a) 1—p(1—a) ro = classical electron radius
21r2a 1 21r2a dap(1l — p)
Algpe = —2—(1 — p(1 1 — Ar = —2— cos 1 —a
e = g 20 D [~ =) "= (o jdp) !"( G ri=a)
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Luminosity — CW laser vs. Pulsed

w r (1 +cosae) I, P 1 1
— NG e he2 \/02 +U’2y sin v,
Pulsed
cos (a./2) 1 1

E — fcollN’VNe 9 2
T o2t 203+ 02 ) 08 (0uf2) + (02, + 02, ) sin® (a/2)

Beam current 1 A at 5, 10 GeV (~4 times less at 18 GeV)
Beam sizes at Compton IP: on the order of 300-400 um
0.7 cm rms bunch length (~23 ps)

IP6 Compton = 10 mrad crossing angle

What laser power required for ~ 1 backscattered photon/collision?
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Measurement Times

_ AP\’
t ! = Lo ? A’/Qnethod

A2 . <A>2
Average analyzing power: method — — Average value of asymmetry over acceptance
o EAY\”
Energy-weighted: A2 hod = (<T>>) —> Energy deposited in detector for each helicity state
Differential: A?nethod — <A2> - Measurement of asymmetry bin-by-bin vs. energy, etc.
2
o [ (EA) 2
(A)" < < (A7)
(E)

Time for 1% measurement of a single bunch at laser power that gives ~1 backscattered photon/crossing?
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Photon Detector Size Using Transverse Asymmetry

Eveam + Eiaser — 2ElaserEbeam/E'y

Lab scattering angle _
&ang cos 0., =
Ebeam — Elaser
Simplified approximate expression . = — ( )
Y
gl ap
0.5
—=-- Epeam=5 GeV
0.41 —— Epeam=10 GeV
Detector position vs. backscattered photon o3l e Epeam=18 GeV
energy 0.2 T
— ‘ Lt ‘.
: < 0.11 e
Calculate transverse asymmetry at projected T TN
detector position 0.0
~0.11
~0.21
0.0 0.2 0.4 0.6 0.8
p = Ey/E]



Electron Detector Size and Segmentation

Design electron detector to be able to capture
asymmetry endpoint and zero-crossing

From nominal dipole length, bend angle, calculate dipole field

R= I-dipole/Gbend
Bdipole = (10/3) Ebeam/R

lgnoring electron scattering angle, position at electron detector from
deflection through magnet + drift to detector

Xdet = 10/3*(E./Bgipole) *[1-€0s(0,)] + z4e*tan(0,)

Calculate for nominal beam energy, asymmetry end point, etc.

Electron b&\
VANV AN

0.5
—_——= Ebeam=5 GeV
0'4- _— Ebeam=10 GeV
034 = Epeam=18 GeV
0.2
0.1
00 t~F =
—01{ e .
0.2
0.0 0.2 0.4 0.6 0.8 1.0
p=E,[EP™

Segmented

electron
. detector

'

Scattered electrons -7
’ /, e
‘.
//, s

AR VARV

Dipole Photon detector
Laser system
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Helicity Correlated Position Differences

Laser/beam helicity correlated motion can result in false
asymmetries if beam and laser alignment not optimized

Example: JLab @ 2 GeV, beam/laser misalignment that results
in 20% reduction in Compton rate can lead to ~0.5% error in
polarization

Rate of Compton events can be monitored to check beam-
laser alignment

- Assumes constant beam size

For measurement of a single bunch, beam trajectory/position
must be the same at each pass through IP

Laser position shifts must be minimized when flipping helicity

Aposd; flAC ompton (%)

1.50 A R4

1.25 -

1.00 -

0.75 -

0.50 A

0.25 A

0.00 A

=B- Opeam = 30um

0.2

0.6
Relative rate

0.8 1.0

Relative change in measured beam polarization
for +/- 25 nm beam motion vs. relative
Compton rate (rate is lower due to

misalignment)
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