p↑A→Xn:

Forward neutrons for polarimetry

W. Schmidke BNL Polarization/polarimetry @ EIC workshop June 29, 2020

- p↑p→Xn & p↑A→Xn results @ RHIC: azimuthal asymmetries A_N
- Model for $p \uparrow A \rightarrow Xn$:
 - UPC (Ultra Peripheral Collision) photons $A \rightarrow A\gamma$
 - $\gamma p \uparrow \rightarrow N^* \rightarrow n\pi^+(\pi^0)$ asymmetries A_{N}
- Apply model \rightarrow fixed target kinematics: polarimetry
- Comparisons pC and pA \rightarrow Xn polarimeters
 - technologies
 - stability, absolute polar. scale, rates @ EIC
- Immediate questions: full model estimates

PHENIX data

target possibilities

Possible tests @ RHIC

$p\uparrow p \rightarrow Xn @ RHIC$

• Early RHIC $p\uparrow p \rightarrow Xn$ result: forward neutrons in Zero Degree Calorimeter (ZDC) have significant azimuthal asymmetry $A_{N} \sim$ few % k Kopeliovich et al. model explains A_N: p interference of π^+ (spin-flip) & a₁⁺ (spin-nonflip) exchanges π/a p n • This $A_{N} \sim \text{few } \%$ routinely used as tool for local polarimetry: for longitudinally polarized proton collisions,

tune spin rotators so azimuthal asymmetry $\rightarrow 0$

p↑A→Xn @ RHIC

 Surprise in 2015 p↑A→Xn data (A = AI, Au, 100 GeV/N beams): PHENIX measured forward neutron asym. in proton direction*

 Very large A_N observed for Au, opposite sign as p↑p→Xn

- Select low multiplicity (~elastic) events: BBC veto AI & Au large, opposite sign A_N
- Clearly something else is going on here \u2014

*PHENIX Coll., C. Aidala et al., PRL 120, 022001 (2018)

Model for $p \uparrow A \rightarrow Xn$

- Convincing description: G. Mitsuka, PHYSICAL REVIEW C 95, 044908 (2017) Sum 2 processes:
- Kopeliovich *et al.* π/a_1 exchange model (slide 2), Glauber extend p \rightarrow A
- UPC photon from A, photoproduction on p↑:

FIG. 2. Target asymmetry $T(\theta_{\pi})$ of the $\gamma^* p^{\uparrow} \rightarrow \pi^+ n$ interaction as function of *W*. In the detector reference frame, the curves correspond to the rapidity of produced neutrons $\eta = 6.8$ and 8.0.

Model for $p \uparrow A \rightarrow Xn$

plots: G. Mitsuka PRC

- Two processes cross section vs. x_F and azimuthal angle distributions: (Au top row, Al bottom row)
- Opposite azim. asym. for UPC, meson exchange processes
- UPC σ rises rapidly $\propto Z^2 \pi/a_1$ exchange σ rises slowly with A
- Sum two processes, A_{N} from azim. dist.
- Excellent agreement w/ PHENIX data
- This model is on firm ground
 Use for polarimetry \square

$p \uparrow Au \rightarrow Xn$ for polarimetry

 Proton beam leaving EIC straight section (not an I.P.): (or @ and I.P. for local polarimetry, reuse experiment ZDC)

- This is just a fixed target version of $p\uparrow A \rightarrow Xn$ process
- Detector: ZDC, proven technology (this experiment's already been done)
- Target?
- 1st thought: Au wire across beam

quickly shot down: wire destroys beam

- Suggestion (A. Zelenski): Xe gas jet

highest Z usable noble gas

Xe target rates

First need cross section

- Mitsuka's model good for A_{N} ; cross section?
 - for PHENIX conditions, ZDC acceptance: $\sigma_{\rm upc}$ ~ 20 mb
- Consistent with rates observed in PHENIX (A. Bazilevsky)
 - model $\sigma_{_{\rm UPC}}$ is also verified \checkmark
- Fixed target case:
- $\gamma p \rightarrow Xn$ kinematics (& ZDC acceptance) identical to colliding case
- just different source (& flux) of photons
- E.g. for $\gamma p \rightarrow \Delta(1232)$ in lab frame:

100 GeV p↑ 1.6 MeV γ ▲ 100 GeV/A Au (PHENIX) ▲ Xe at rest (polarimeter)

Or in proton rest frame (where flux calculated):

p↑ at rest 340 MeV γ 20 TeV/A Au (PHENIX)

100 GeV/A Xe (polarimeter)

• Ratio fluxes* polarimeter/PHENIX ~ 0.1 *Klein, Nystrand, Phys.Rev.C60:014903,1999 • So for fixed target polarimeter: $\sigma_{\rm UPC}$ ~ 2 mb

Xe target rates

- Proton current: $I_{p} = 0.75-1 \text{ A}$ (EIC parameter table)
- Xe gas target density:
 - Q: can it be ~same as polarized Hjet, 1.2×10¹² atoms/cm²?
 - A: "looks feasible" (A. Zelenski)
- Cross section, current, target density \Rightarrow rate ~ 12 kHz

narrow Xe jet ~200 μ , lower density

 \Rightarrow measure transverse P profile

Rates well within range for reasonable P measurements Caveat: many of these numbers best guesses for now

$p \uparrow C \lor p \uparrow A \rightarrow Xn polarimetry$ COMPLEMNTARITY

- Rates etc. adequate as alternative to pC polarimeter
 Compare kinematice, detectors two methods;
- Compare kinematics, detectors two methods:
- <u>pC</u>
 C nuclei 100's keV energy
- Calorimetry in Si strips: calib. α source ↔ Si dead layer
- PID via TOF in Si strips

<u>pA→Xn</u>

- neutrons 100's GeV energy
- Calorimetry e.g. Pb-scint.: calib. e.g. beam-gas neutrons
- ~100's GeV hadronic shower after sweeping magnet ⇒ neutrons (or K,)

 Personally I'm more familiar with this, standard HEP technology 9

$p \uparrow C vs p \uparrow A \rightarrow Xn polarimetry$

Absolute polarization scale?

- Original hope was to calibrate pC scale w/ Hjet, drop Hjet
- In practice pC systematics too unstable; compare to pA:

<u>pA→Xn:</u>

 ${\rm A}_{_{\rm N}}$ dominated by resonances,

kinematics defined by $\mathsf{E}_{_{\text{beam}}}\text{'s}$

- Good ZDC E-scale syst. has been achieved (ZEUS FNC 2%*)
- Negligible target effect on 100's GeV measured neutrons
- Systematics of pAu→Xn much better controlled
 Absolute scale calibration w/ Hjet may be possible

High bunch xing rate @ EIC?

- pC \rightarrow pC: many bunch ×ings in system, bkg. overlap w/ neighbors **x**
- pA \rightarrow Xn: neutrons β ~1, prompt with beam \checkmark

⇒ Some challenges @ EIC mitigated

*ZEUS Coll., S. Chekanov et al., Nuclear Physics B 776 (2007) 1–37

10

Immediate questions

<u>G. Mitsuka's model</u>

• Estimates here for fixed target rate, A_{N} :

back-of-envelope, factors of 2 or so

- Need to reapply full model for fixed target kinematics, nucleus A, both processes UPC & meson exchanges
- Looking for help!

PHENIX data

- Full analysis still in progress...
- Apply BBC detectors: scintillators along beam line
- Veto on BBC (blue) significant increase A_N over inclusive (red)
- Maybe reduces meson exchange, enhance UPC?
- Compare to model
- More to milk from this data...

Immediate questions: targets?

Xe gas target

- How feasible? How big a deal?
- What densities?
- Jet narrower than beam?

Jet transversely movable? \Rightarrow measure transverse P profile

Other high Z

- Some way to get Au across beam without destroying it?
- Other high Z? W (tungsten)? high melting, boiling temps.

A lot of questions

pC polarimeter targets

• $pC \rightarrow pC$ polarimeter needs alternative target technology for EIC

• Any pursuit should consider needs for $pA \rightarrow Xn$ polarimeter (high Z)

Tests at RHIC

<u>Could test in remaining RHIC runs</u>
Would need target station near Hjet
Here 15-18 m clockwise from Hjet:

- After DX splits blue/yellow beams, space for ZDC between beam pipes
- Same place as @ STAR, PHENIX
- Spares available (PHOBOS, BRAHMS, PHENIX?)

Light ion polarimetry?

Summary

- Significant forward neutron asymmetries seen in pA @ RHIC
- Cross section, asymmetry convincingly described by model: based on well known physics and/or measurements
- Model: asymmetry can be used for fixed target polarimetry
- Detector techniques straightforward
- Alternative to pC polarimeter: many shortcomings addressed
- Studies needed:
 - firm up model expectations for fixed target
 - suitable target not clear, merits further study
- Possible to study at RHIC (need new target station)
- Light ions?

Compelling promise, should pursue this further!

Thanks for discussions: A. Bazilevsky, G. Mitsuka, A. Zelenski

Fixed target $p \uparrow Au \rightarrow Xn$ various E_{heat}

E_{beam} dependence:
UPC σ rises
π/a₁ exchange
σ ~constant

$p \uparrow Au \rightarrow Xn$ for polarimetry

Detector technologies are straightforward & well known*

- ZDC: e.g. Pb-scintillator calorimeter
- Veto counters: scintillators
- Useful: compare to present p↑C→pC polarimeter \