Physics Drivers for polarized beams

Andrea Bressan
University of Trieste and INFN

Beam Polarization and Polarimetry at EIC
June 26-July 1st, CFNS, Stony Brook
Why we need an EIC

World Data on F_2^p

World Data on g_1^p

World Data on h_1^p

momentum spin transverse spin ~ angular momentum
The inclusive deep inelastic scattering double differential cross section $\ell p \rightarrow \ell' X$ can be expressed using two structure functions F_2 and F_1, or, better, F_2 and F_L ($F_L = F_2 - 2xF_1$) which depend from x and mildly by Q^2.

$$\frac{d^2\sigma}{dx dQ^2} = \frac{4\pi\alpha^2}{2xQ^4} [(1 + (1 - y)^2)F_2(x, Q^2) - y^2 F_L(x, Q^2)]$$

Keeping in mind the transformations:

$$\frac{d^2\sigma}{dxdy} = \frac{2\pi M\nu}{E'} \frac{d^2\sigma}{d\Omega dE'} = x(s - M^2) \frac{d^2\sigma}{dxdQ^2} \approx xs \frac{d^2\sigma}{dxdQ^2}$$

We are able to express the cross section in other variables.
In quark-parton model the structure functions can be written as:

\[F_2(x, Q^2) = x \sum_q e_q^2 f_1^q (x) \quad \text{and} \quad F_L(x, Q^2) = 0 \]

where \(f_1^q \) is the probability that to find a parton of type \(q = u, \bar{u} \ldots \) with momentum fraction \(p_q = xP \) in the proton.

When including higher orders the structure functions become:

\[F_2(x, Q^2) = x \sum_{n=0}^{\infty} \frac{\alpha_s^n}{(2\pi)^n} \sum_{i=q,g} \int_0^1 \frac{dz}{z} C_{2,i}^{(n)} (z, Q^2) f_1^i \left(\frac{x}{z} \right) \]

With the Wilson coefficients \(C_{2,i}^{(n)} \) known up to \(N^3\)LO

\[C_{2,q}^{(0)} = e_q^2 \delta (1 - z) \quad \text{and} \quad C_{2,g}^{(0)} = 0 \]
Impact of the HERA ep Collider

Cross Section vs $Q^2 (\text{GeV}/c)^2$

- HERA NC e^+p 0.4 fb$^{-1}$
- HERA NC e^+p 0.5 fb$^{-1}$

$\sqrt{s} = 318 \text{ GeV}$

- Fixed Target
- HERAPDF2.0 e^+p NLO
- HERAPDF2.0 e^+p NLO

arXiv:1506.06042
Polarized Cross Sections

• For longitudinally polarized beams (either parallel or antiparallel we can express the difference of the parallel to anti-parallel cross sections by mean of two structure functions g_1 and g_2,

$$\frac{d^2\sigma_{\uparrow\rightarrow}}{dx\,dQ^2} - \frac{d^2\sigma_{\downarrow\rightarrow}}{dx\,dQ^2} = \frac{d^2\Delta\sigma_{\parallel}}{dx\,dQ^2} = \frac{16\pi\alpha^2 y}{Q^4} \left[\left(1 - \frac{y}{2} - \frac{\gamma^2 y^2}{4} \right) g_1(x, Q^2) - \frac{\gamma^2 y}{2} g_2(x, Q^2) \right]$$

• And when the proton beam is transversely polarized we have:

$$\frac{d^3\sigma_{\uparrow\rightarrow}}{dx\,dQ^2\,d\phi} - \frac{d^3\sigma_{\downarrow\rightarrow}}{dx\,dQ^2\,d\phi} = \frac{d^3\Delta\sigma_{\perp}}{dx\,dQ^2\,d\phi} = -\cos \phi \frac{8\alpha^2 y}{Q^4} \sqrt{1 - y - \frac{\gamma^2 y^2}{4}} \left[\frac{y}{2} g_1(x, Q^2) + g_2(x, Q^2) \right]$$

• With $\gamma = \sqrt{Q^2/\nu} \ll 1$
Physics content of the structure functions

- At LO in quark-parton model the structure functions can be written as:

\[g_1(x, Q^2) = \frac{1}{2} \sum_q [\Delta q(x) - \Delta \bar{q}(x)] \quad \text{and} \quad g_2(x, Q^2) = 0 \]

Where the helicity distribution \(\Delta q(x) = q^+(x) - q^-(x) \) represents the difference between the number of quarks in the proton with the spin parallel \(q^+ \) and antiparallel \(q^- \) to the spin of the proton.

- When including higher orders the structure functions content become, f.i.:

\[g_1(x, Q^2) = \frac{1}{2} \sum_{k=1}^{n_f} e_f^2 \left[C_q^S \otimes \Delta \Sigma + 2n_f C_g \otimes \Delta g + C_q^{NS} \otimes \Delta q^{NS} \right] \]

The Wilson coefficients at LO are:

\[C_q^S = C_q^{NS} = \delta(1 - x) \quad \text{and} \quad C_g = 0 \]
The spin content of the proton: where we stand

Gluons PDF are accessed using DGLAP Equations

\[
\frac{d}{dt} \Delta \Sigma(x, t) = \frac{\alpha_s(t)}{2\pi} \int_x^1 \frac{dy}{y} \left[P_{qq}^S \left(\frac{x}{y}, \alpha_s(t) \right) \Delta \Sigma(y, t) + 2n_f P_{qg} \left(\frac{x}{y}, \alpha_s(t) \right) \Delta g(y, t) \right]
\]

\[
\frac{d}{dt} \Delta g(x, t) = \frac{\alpha_s(t)}{2\pi} \int_x^1 \frac{dy}{y} \left[P_{gq} \left(\frac{x}{y}, \alpha_s(t) \right) \Delta \Sigma(y, t) + P_{gg} \left(\frac{x}{y}, \alpha_s(t) \right) \Delta g(y, t) \right]
\]

\[
\frac{d}{dt} \Delta q_{NS}(x, t) = \frac{\alpha_s(t)}{2\pi} \int_x^1 \frac{dy}{y} P_{qq}^{NS} \left(\frac{x}{y}, \alpha_s(t) \right) \Delta q_{NS}(x, t)
\]

With \(t = \ln \frac{Q^2}{\Lambda^2} \), \(\Delta \Sigma(x, t) = \sum_{i=1}^{n_f} \Delta q_i \) and \(\Delta q_{NS}(x, t) = \sum_{i=1}^{n_f} (e_i^2 / \langle e^2 \rangle - 1) \Delta q_i \),

where \(\langle e^2 \rangle = \frac{1}{n_f} \sum_{i=1}^{n_f} e_i^2 \)

A very powerful tool access \(\Delta g \), but limited by the present experimentally available phase space
QCD fits - World data on g_1^p and g_1^d

$g_1(x, Q^2)$ as input to global QCD fits for extraction of $\Delta q_f(x)$ and $\Delta g(x)$

x and Q^2 coverage not yet sufficient for precise Δg
Can be improved by constraining from pp data (as DSSV, NNPDF…)

$$\frac{dg_1}{d\ln Q^2} \propto -\Delta g(x, Q^2)$$
Another NLO pQCD fit to g_1 DIS world data

- Assumes functional forms for $\Delta \Sigma$, ΔG and Δq^{NS} and SU3 symmetry
- Use DGLAP equations.
- Fit g_1^p, g_1^d, g_1^n DIS world data

→ Quark spin contribution:
$$\Delta \Sigma = 0.31 \pm 0.05 \text{ at } Q^2 = 3 \text{ (GeV/c)}^2$$

Uncertainties are dominated by the bad knowledge of the functional forms.

→ Gluon spin contribution: ΔG not well constrained, even the sign, using DIS only

Solution with $\Delta G > 0$ agrees with result from DSSV++ using RHIC pp data

$$\begin{align*}
0.82 \leq \Delta U &\leq 0.85 \\
-0.45 \leq \Delta D &\leq -0.42 \\
-0.11 \leq \Delta S &\leq -0.08
\end{align*}$$
Measurement of the ΔG at RHIC

\[\Delta G(x, Q^2 = 10 \text{ GeV}^2/c^2) = 0.20^{+0.6}_{-0.7} \]

DSSV++

\[\int_{0.05}^{1} dx \Delta g(x, Q^2 = 10 \text{ GeV}^2/c^2) = 0.17 \pm 0.06 \]

NNPDFpol1.1

\[\int_{0.05}^{0.2} dx \Delta g(x, Q^2 = 10 \text{ GeV}^2/c^2) = 0.5 \pm 0.4 \]

JAM15

\[\int_{0.001}^{0.8} dx \Delta g(x, Q^2 = 1 \text{ GeV}^2/c^2) = 0.20^{+0.6}_{-0.7} \]

E. Nocera et al.,
NPB 887 (2014) 276

Gluon helicity $\Delta g/g$ from SIDIS

Extraction at LO:

$$\Delta G/G (x = 0.1) = 0.11 \pm 0.04 \pm 0.04$$

Photon Gluon Fusion

EPJC 77 (2017) 209
Summary on nucleon SPIN

\[\frac{1}{2} = \frac{1}{2} (\Delta u_v + \Delta d_v + \Delta q_s) + \Delta G + L_q + L_g \]

Quarks \(\frac{1}{2} \Delta \Sigma \sim 0.15 \) from \(g_1 \) measurements and global analysis at NLO. Largest uncertainty on \(\Delta \Sigma \) due to uncertainty on \(\Delta G \).

Gluons \(\Delta G \sim 0.2 \) integrated between \(0.05 < x < 0.2 \): precise result from RHIC. \(\Delta G/G \) positive at \(x \sim 0.1 \) (from data of \(\gamma g \) fusion process, at LO). Low-\(x \) contribution to integral still unknown. Not enough constrain from \(g_1 \) global analysis at NLO.

Orbital momenta: \(L_q + L_{q'} = ? \) Ongoing studies of GPDs.

Promising results from lattice QCD calculations:

\(\to \) **The main question raised in ‘Nucleon spin crisis’ is resolved:**

- Quark spin represents a non zero fraction (0.3) of nucleon spin
 (measurements and lattice QCD calculations)
- The hypothesis of very large \(\Delta G \) (2 to 3, associated to \(L \sim -2 \div -3 \)) rejected

\(\to \) **Puzzle still pending:** share between \(\Delta G \) and \(L \)
The semi inclusive deep inelastic scattering cross section for a hadron of type h of a given energy fraction z_h is written as:

$$
\frac{d^3\sigma}{dx dy dz_h} = \frac{2\pi \alpha^2}{Q^2} \left[\frac{(1 + (1 - y)^2)}{xy} F_2^h(x, z_h, Q^2) + \frac{2(1 - y)}{y} F_L^h(x, z_h, Q^2) \right]
$$

Where the structure functions are:

$$
F_2^h(x, z_h, Q^2) = \sum_{q, \bar{q}} e_q^2 \left[f_1^q(x, Q^2) D_{h/q}(z; Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] \quad \text{(QCD improved)}
$$

$$
F_L^h(x, z_h, Q^2) = \sum_{q, \bar{q}} e_{\bar{q}}^2 \left[\frac{\alpha_s(Q^2)}{2\pi} \right] \quad \text{(QCD improved)}
$$
Collinear Multiplicities

$\frac{dM_{\pi^+}}{dz} + \alpha$

$0.004 < x < 0.01$
- $\alpha = 1.00$
- $\alpha = 0.75$
- $\alpha = 0.50$
- $\alpha = 0.25$
- $\alpha = 0$

$0.01 < x < 0.02$

$0.02 < x < 0.03$

$0.03 < x < 0.04$

$0.04 < x < 0.06$

$0.06 < x < 0.10$

$0.10 < x < 0.14$

$0.14 < x < 0.18$

$0.18 < x < 0.40$

$0.2 < 0.4 < 0.6 < 0.8$

Curves: COMPASS
LO fit

hep-ex/1604.02695
Quark helicities from semi-inclusive DIS

Leading order extraction of quark helicities from spin asymmetries:

- COMPASS
 \[PLB693(2010)227,\] using DSS FFs

- HERMES
 \[PRD71(2005)012003\]
 __ DSSV at NLO

\[l^\pm p^\to \to l^\pm h^\mp X\]

- Full flavour separation \(x \approx 0.004\)
- Sea quark distributions \(\approx 0\)
- Good agreement with global fits

What about \(\Delta s\)? Integral is found negative from \textit{inclusive} data, when imposing SU3 while here from \textit{semi-inclusive} data, \(x > \sim 0.005\) \(\Delta s\) is compatible with zero.

\textbf{NB:}
- The extraction assumes quark Fragmentation Functions known (DSS here)
- No measurement at lower \(x\)

\[Q^2 = 3 \text{ (GeV/c)}^2\]
Transverse structure of the Nucleon

Confinement Scale

Transverse momentum

Transverse position

Longitudinal momentum

Photon Virtuality Q^2

Hard Scale

High Energy Probe

$W_p^q (x, \vec{k}_\perp, \vec{b}_T)$
Confined parton motion in a hadron

- **Scattering with a large momentum transfer**
 - Momentum scale of the hard probe $Q > \frac{1}{R} \sim 1 \text{ fm}^{-1} \sim \Lambda_{QCD}$
 - Combined motion $\sim \frac{1}{R}$ is too week to be sensitive to the hard probe
 - Collinear factorization – integrated into PDFs

- **Scattering with multiple momentum scales observed**
 - Two-scale observables (such as low P_{hT} SIDIS, low p_T Drell-Yan) $Q \gg q_T \sim \frac{1}{R} \sim \Lambda_{QCD} \sim 1 \text{ fm}$
 - “Hard” scale Q localizes the probe to see the quark or gluon d.o.f.
 - “Soft” scale q_T could be sensitive to the confined motion
 - TMD factorization: the confined motion is encoded into TMDs
When we consider the transverse momentum of the quark in the calculation of the cross section, Transverse Momentum Dependent parton distribution (TMDs) gain a dependence from the intrinsic transverse momentum k_{\perp}.

The unpolarised number density of the quarks gains a dependence from the intrinsic transverse momentum k_{\perp}:

$$ f_1^q (x, k_{\perp}) $$

New parton densities arise: the Boer-Mulders functions $h_{1,q}^\perp (x, k_{\perp})$, describing the correlation between the intrinsic quark transverse momentum and the spin of the quark in an unpolarised nucleon:

$$ f_{q^\uparrow} (x, k_{\perp}, \vec{s}) = f_1^q (x, k_{\perp}) - \frac{1}{M} h_{1,q}^\perp (x, k_{\perp}) \vec{s} \cdot (\vec{p} \times \vec{k}_{\perp}) $$
Accessing TMD PDFs and FFs

- TMD factorization works in the domain where there are two observed momenta in the process, such as SIDIS, DY, e^+e^-. $Q \gg q_T$: Q is large to ensure the use of pQCD, q_T is much smaller such that it is sensitive to parton’s transverse momentum.

- **SIDIS off polarized p, d, n targets**
 - HERMES
 - COMPASS
 - JLab
 - *future: EIC*

- **polarised Drell-Yan**
 - COMPASS
 - RHIC
 - FNAL
 - *future: FAIR, JPark, NICA*

- $e^+e^- \rightarrow h_1h_2$
 - BaBar
 - Belle
 - Bes III
Azimuthal asymmetries in SIDIS

We look at our events in the Gamma Nucleon System (GNS), i.e. we need a perfectly reconstructed lepton kinematic.
\[
\frac{d^5 \sigma}{dx dy dz dP_{hT} d\phi_h} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1 - \epsilon)} \left(1 + \frac{y^2}{2x}\right) \left\{ F_{UU,T} + \epsilon F_{UU,L} + \sqrt{2\epsilon(1 + \epsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} + \epsilon \cos 2\phi_h F_{UU}^{\cos 2\phi_h} \right. \\
+ \lambda_e \sqrt{2\epsilon(1 + \epsilon)} \sin \phi_h F_{LU}^{\sin \phi_h} + S_{\parallel} \left[\sqrt{2\epsilon(1 + \epsilon)} \sin \phi_h F_{UL}^{\sin \phi_h} + \epsilon \sin 2\phi_h F_{UL}^{\sin 2\phi_h} \right] \\
+ \lambda_e S_{\parallel} \left[\sqrt{1 - \epsilon^2} F_{LL} + \sqrt{2\epsilon(1 + \epsilon)} \cos \phi_h F_{LL}^{\cos \phi_h} \right] \\
+ \left| \vec{S}_{\perp} \right| \left(\sin (\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \epsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \right) \\
\]

14 independent azimuthal modulations
SIDIS Experiments

SIDIS Experiment must:

• Have large acceptances on all the relevant variables \(x, Q^2, z, P_{hT}, \phi \)

• Use different targets (p, d, n) and identify hadrons to allow flavor separation

• Be at different energies for to cover PDFs from the valence region down to small-\(x \)

• Large luminosity to allow multidimensional results needed by the complexity of TMDs

• **The polarized lepton-nucleon collider is a mandatory tool to reach the level of ordinary PDF**
SIDIS access to TMDs

Factorization (Collins & Soper, Ji, Ma, Yuan, Qiu & Vogelsang, Collins & Metz...)

\[
\sigma(\ell p \rightarrow \ell' hX) \sim \text{TMDs} \otimes \hat{\sigma}^{\gamma q \rightarrow q} \otimes \text{TMD-FFs}
\]

- chiral odd
- T odd

TMDs

\[(x, \vec{k}_T) \]

Nucleon polarization

<table>
<thead>
<tr>
<th>Parton polarization</th>
<th>U</th>
<th>T</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parton polarization</td>
<td>U</td>
<td>(f_1)</td>
<td>(f_{1T})</td>
</tr>
<tr>
<td>T</td>
<td>(h_1^T)</td>
<td>(h_1, h_{1T})</td>
<td>(h_{1L})</td>
</tr>
<tr>
<td>L</td>
<td>(g_{1T})</td>
<td>(g_{1L})</td>
<td></td>
</tr>
</tbody>
</table>

Hadron polarization

<table>
<thead>
<tr>
<th>Parton polarization</th>
<th>U</th>
<th>T</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parton polarization</td>
<td>U</td>
<td>(D_1)</td>
<td>(D_{1T})</td>
</tr>
<tr>
<td>T</td>
<td>(H_1^T)</td>
<td>(H_1, H_{1T})</td>
<td>(H_{1L})</td>
</tr>
<tr>
<td>L</td>
<td>(G_{1T})</td>
<td>(G_{1L})</td>
<td></td>
</tr>
</tbody>
</table>

- NOT directly accessible
- Their extractions require measurements of x-sections and asymmetries in a **large** kinematic domain of \(x, Q^2, z, P_{hT} \)
TMD evolution:

- QCD evolution of TMDs in Fourier space (solution of equation)

\[
F(x, b; Q) \approx C \otimes F(x, c/b^*) \exp \left\{ - \int_{c/b^*}^{Q_f} \frac{d\mu}{d} \left(A \ln \frac{Q_f^2}{\mu^2} + B \right) \right\} \times \exp[-S_{\text{non-pert}}(b, Q)]
\]

Evolution of longitudinal/collinear part

Evolution of transverse part (Sudakov form factor)

Non-perturbative part has to be fitted to experimental data

The key ingredient is spin-independent

- Polarized scattering data comes as ratio: e.g.
 \[A_{UT}^{\sin(\Phi_h - \Phi_s)} = \frac{F_{UT}^{\sin(\Phi_h - \Phi_s)}}{F_{UU}} \]

- Unpolarised data is very important to constrain/extract the key ingredient for the non-perturbative part
Transversity PDF

\[h_1^q(x) = q^\uparrow(x) - q^{\uparrow\downarrow}(x) \]

with \(q = u_V, d_V \) and quarks/antiquarks of the sea

Describes quark with spin parallel to the nucleon spin in a transversely polarized nucleon

- is chiral-odd: decouples from inclusive DIS
- probes the relativistic nature of quark dynamics: in NR limit, boost and rotations commute and we should have \(h_1^q(x) = g_1^q(x) \)
- no contribution from the gluons \(\rightarrow \) simple \(Q^2 \) evolution
- Positivity constrain, i.e.: Soffer bound [Soffer, PRL 74 (1995)]
 \[2|h_1^q(x)| \leq f_1^q(x) + \Delta q(x) \]
- first moments: tensor charge
 \[g_1^q(Q^2) = \int_0^1 dx \left[h_1^q(x, Q^2) - h_1^\bar{q}(x, Q^2) \right] \]
is chiral-odd:

observable effects are given only by the product of $h_1^q(x)$ and another chiral-odd function

can be measured in SIDIS on a transversely polarized target via “quark polarimetry”

$\ell N^\uparrow \rightarrow \ell' h X$

“Collins” asymmetry
“Collins” Fragmentation Function

$\ell N^\uparrow \rightarrow \ell' h h X$

“two-hadron” asymmetry
“Interference” Fragmentation Function

$\ell N^\uparrow \rightarrow \ell' \Lambda X$

Λ polarization
Fragmentation Function of $q^\uparrow \rightarrow \Lambda$
Global Analysis: Transversity

Fragmentation (or hadronization) is the nonperturbative process that brings quarks and gluons to dress into observable hadrons. Fragmentation functions (FFs) describe the probability that a hadron h is produced in the fragmentation process of a quark q, taking away a fraction of the quark momentum.

What about the quark spin? The fragmentation of a transversely polarized quark in an unpolarised hadron is described by:

$$ D_{h/q}^{\uparrow}(z, p_{\perp}) = D_{h/q}(z, p_{\perp}) + \frac{\hat{k} \times \vec{p}_{\perp} \cdot \hat{S}_{qT}}{zm_h} H_{1}^{\perp}(z, p_{\perp}) $$

Where \hat{k} is the direction of the fragmenting quark and \hat{S}_{qT} is it’s spin projection in the transverse plane.

In this model, the $q\bar{q}$ pairs at each string breaking are produced in a state that has total orbital angular momentum $L = 1$ and total spin $S = 1$ opposite to the orbital angular momentum such that $J = L + S = 0$.

For a struck quark q_A with spin along \hat{y}, the first $q_2\bar{q}_2$ at the string breaking will be polarized along $-\hat{y}$, while the angular momentum \vec{L}_2 is along \hat{y}. If the initial quark q_A is u then the 3P_0 mechanism produces opposite effects for positive and for negative pions.
The full points are Monte Carlo data, scaled by $\lambda \sim \langle h_1^u / f_1^u \rangle \sim 0.055$.

Agreement with the measured Collins asymmetry is quite satisfactory.
Sivers Asymmetry

Sivers: correlates nucleon spin & quark transverse momentum k_T/T-ODD at LO:

$$A_{Siv} = \frac{\sum_q e_q^2 f_{1Tq}^{\perp} \otimes D_q^h}{\sum_q e_q^2 q \otimes D_q^h}$$

$$\mu p^\uparrow \to \mu X h^{\pm}$$

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>Sivers proposes f_{1T}^{\perp}</td>
</tr>
<tr>
<td>1993</td>
<td>J. Collins proofs $f_{1T}^{\perp} = 0$ for T invariance</td>
</tr>
<tr>
<td>2002</td>
<td>S. Brodsky, Hwang and Schmidt demonstrate that f_{1Tq}^{\perp} may be $\neq 0$ due to FSI</td>
</tr>
<tr>
<td>2002</td>
<td>J. Collins shows that $(f_{1T}^{\perp}){DY} = -(f{1T}^{\perp})_{SIDIS}$</td>
</tr>
<tr>
<td>2004</td>
<td>HERMES on p: $A_{Siv}^{\pi^+} \neq 0$ and $A_{Siv}^{\pi^-} = 0$</td>
</tr>
<tr>
<td>2004</td>
<td>COMPASS on d: $A_{Siv}^{\pi^+} = 0$ and $A_{Siv}^{\pi^-} = 0$</td>
</tr>
<tr>
<td>2008</td>
<td>COMPASS on p: $A_{Siv}^{\pi^+} \neq 0$ and $A_{Siv}^{\pi^-} = 0$</td>
</tr>
</tbody>
</table>
Sivers asymmetry on p charged pions (and kaons), HERMES and COMPASS
Transverse Spin Asymmetry in Drell-Yan

190 GeV/c π^- beam, transversely polarized NH$_3$ target

A_N^{\pm}

STAR p-p 500 GeV (L = 25 pb$^{-1}$)

$0.5 < P_T^W < 10$ GeV/c

$W^+ \rightarrow l^+ \nu$

KQ (assuming “sign change”)

Global χ^2/d.o.f. = 7.4 /6

3.4% beam pol. uncertainty not shown

$W^- \rightarrow l^- \bar{\nu}$

KQ (no “sign change”)

Global χ^2/d.o.f. = 19.6 /6

3.4% beam pol. uncertainty not shown

$f_{1T, DY} = -f_{1T, SIDIS}$

PRL119, 112002 (2017)
To conclude

- Many important results both for the spin structure and the internal 3D structure of the nucleon have been provided by experiments at HERA, CERN, RHIC and JLAB; very partial coverage here.

- Before the EIC, JLAB will map the valence region with high precision; COMPASS and RHIC will complete their programs.

- **THE EIC will allow us TO MOVE FROM EXPLORATION TO PRECISION in the KNOWLEDGE of the internal structure of the NUCLEON.**
Thank you
Kinematic coverage
Global analysis of the spin dependent distribution functions

\[\Delta \Sigma = +0.36 \pm 0.09 \]
\[\Delta s^+ = -0.03 \pm 0.10 \]

Gluon Spin From Lattice QCD

\[\Delta \vec{p}_p = (0,0,0) \]

\[\mu^2 = 10 (\text{GeV}/c)^2 \]

\[\vec{p}_p = (0,0,p_3) \]

\[\mu^2 = 10 (\text{GeV}/c)^2 \]

\[m_\pi = 139 \text{ MeV}/c^2 \]

\[\Delta G (\mu^2 = 10 (\text{GeV}/c)^2) \approx S_G (\mu^2 = 10 (\text{GeV}/c)^2, |p| \to \infty) = 0.251 \pm 0.047 \pm 0.016 \]

MS scheme

Cahn $A_{UU}^{\cos \phi}$ and Boer-Mulders $A_{UU}^{\cos 2\phi}$ modulation

$$A_{UU}^{\cos \phi}(x, z, P_{hT}^2; Q^2)$$
$$\propto \frac{1}{Q} \sum_q e_q^2 \left[f_1^q \otimes D_1^q \rightarrow h - h_1^\perp q \otimes H_1^\perp, q \rightarrow h \right]$$

$$A_{UU}^{\cos 2\phi}(x, z, P_{hT}^2; Q^2)$$
$$= -x \sum_q e_q^2 \int d^2 \vec{k} d^2 \vec{p} \frac{2 (\hat{h} \cdot \vec{k}) (\hat{h} \cdot \vec{k}) - \vec{k} \cdot \vec{p}}{M m_h} h_1^\perp q (x, k_\perp^2; Q^2) H_1^\perp, q \rightarrow h (z, p_\perp^2; Q^2)$$
P_hT dependent Multiplicities M_{UU}^h

$$M^h(x, z, P_{hT}^2; Q^2) = \frac{d^5 \sigma^h}{dx dQ^2 dz dP_{hT}^2} \frac{d^2 \sigma^{DIS}}{dx dQ^2} \sim F_{UU}^h(x, z, P_{hT}^2; Q^2)$$
Collins asymmetry on proton. Multidimensional
Extraction of TSAs with a Multi-D \((x: Q^2: z: p_T)\) approach

One dense plot out of many
TSA of inclusive jets and π^\pm within jets from STAR

COLLINS asymmetries: general agreement between data and predictions from SIDIS consistent with TMD factorization and universality of the Collins function
2h asymmetries on p and $^{3}P_0$ model for FF

$$A^\sin(\phi_R + \phi_S - \pi)_{UT} = \frac{\sum q e_q^2 h_1^q(x) H_{q \rightarrow h_1 h_2}^2(z, M_{h_1 h_2}^2)}{\sum q e_q^2 q(x) D_a^{h_1 h_2}(z, M_{h_1 h_2}^2)}$$

$$a_p^{u \rightarrow h^+ h^-} = \langle \sin(\phi_R + \phi_S - \pi) \rangle \quad \text{and} \quad \vec{R} = \frac{z_2 \vec{P}_{h_1} - z_1 \vec{P}_{h_2}}{z_1 + z_2} \quad \text{and as before} \quad \lambda \sim \langle h_1^u / f_1^u \rangle \sim 0.055$$

6/26/2020 Beam Polarization and Polarimetry at the Electron Ion Collider
Interference fragmentation functions in pp

\[p^+ p \rightarrow \pi^+ \pi^- X \rightarrow h_1 \cdot H_1^{\alpha} \]

survives in collinear framework

\[A_{UT} \sin(\phi_{RS}) = \frac{1}{Pol} \frac{d\sigma^\uparrow - d\sigma^\downarrow}{d\sigma^\uparrow + d\sigma^\downarrow} \]

- Significant di-hadron asymmetries both at \(\sqrt{s} = 200\text{GeV} \) and \(\sqrt{s} = 500\text{GeV} \) (arXiv:1710.10215)
- Increasing with \(p_T \)
- Access to transversity with a collinear observable
\(P_{\Lambda(\bar{\Lambda})}(x, z) = \frac{\sum_q e_q^2 h_1^q(x) H_1^{\Lambda(\bar{\Lambda})}(z)}{\sum_q e_q^2 f_1^q(x) D_1^{\Lambda(\bar{\Lambda})}(z)} \)

\[
\frac{dN}{d \cos \theta^*} \propto A(1 + \alpha P_{\Lambda(\bar{\Lambda})} \cos \theta^*)
\]
\(\Lambda \) transverse spin transfer from STAR

\[
D_{TT} = \frac{d\sigma^{p\uparrow p\rightarrow \Lambda\uparrow X} - d\sigma^{p\uparrow p\rightarrow \Lambda\downarrow X}}{d\sigma^{p\uparrow p\rightarrow \Lambda\uparrow X} + d\sigma^{p\uparrow p\rightarrow \Lambda\downarrow X}}
\]

\[
D_{TT} = \frac{1}{\alpha P_B \langle \cos \theta^* \rangle} \left(\sqrt{N_{\uparrow \cos \theta^* N_{\downarrow \cos \theta^*}} - \sqrt{N_{\downarrow \cos \theta^* N_{\uparrow \cos \theta^*}}} \right) \left(\sqrt{N_{\uparrow \cos \theta^* N_{\downarrow \cos \theta^*}} + \sqrt{N_{\downarrow \cos \theta^* N_{\uparrow \cos \theta^*}}} \right)
\]

\[
\frac{dN}{d\cos \theta^*} \propto A \left(1 + \alpha P_{\Lambda(\bar{\Lambda})} \cos \theta^* \right)
\]

About 60\% of \(\Lambda \) or \(\bar{\Lambda} \) are not primary particles, but are from heavier hyperons decay.

\[
D_{TT}(\Lambda) = +0.031 \pm 0.033_{\text{stat}} \pm 0.008_{\text{sys}}
\]

\[
D_{TT}(\bar{\Lambda}) = -0.034 \pm 0.040_{\text{stat}} \pm 0.009_{\text{sys}}
\]
TSA of inclusive jets and π^\pm within jets from STAR

COLLINS LIKE asymmetries: sensitive to linearly polarized gluons in a polarized proton, are found to be small and provide the first constraints on model calculations.
TSSA A_N studies at PHENIX

Described by twist 3 collinear approach (1 scale, high p_T)

Suppression in p^+A expected by gluon saturation ($\propto A^{1/3}$)

Hybrid approach: twist-3 and CGC
Sivers Asymmetry for Gluon from SIDIS

\[A_{PGF}^{Siv,d} = -0.14 \pm 0.15 \text{(stat.)} \pm 0.10 \text{(syst.)} \quad \langle x_g \rangle = 0.13 \]

\[A_{PGF}^{Siv,p} = -0.26 \pm 0.09 \text{(stat.)} \pm 0.06 \text{(syst.)} \quad \langle x_g \rangle = 0.15 \]