

Polarized Beams in Colliders

Mei Bai

GSI GmbH, Universität Bonn

June 26 – July 1, 2020

Colliders with polarized beams

- Polarized e+e- colliders
 - As early as early 70s like ACO, VEPP-2
 - Most are circular and the polarization was built up during the store time via Sokolov-Ternov effect (ST effect)

The difference of probability between the two scenarios allows the radiative polarization build up .

In a planar circular accelerator

• The ST induced radiative polarization buildup is given

$$P(t) = P_{ST}(1 - e^{-t/\tau_{ST}}),$$

where $P_{ST} = 8/5\sqrt{3} \approx 0.9237$

and
$$\tau_{ST}^{-1} = \frac{\frac{5\sqrt{3}}{8}c\lambda_e r_e \gamma^5}{\rho^3} = 3654 \frac{R/\rho}{B[T]^3 E[GeV]^2} [sec^{-1}]$$

S. Mane

S. Mane et al, Spin-polarized charged particle bams

 For HERA, the estimated ST polarization buildup time for its 26.7 GeV electrons is about 43 mins

|-----

In a planar circular accelerator

 In reality, the emission of a photon can yield a sudden change of the particle's energy and induce a spin diffusion mechanism that leads to loss of polarization. The equilibrium polarization is the combination of the two effects

$$P_{eq} = \frac{8}{5\sqrt{3}} \frac{\left\langle \left| \rho^{-3} \right| \hat{b} \cdot \left[\hat{n} - \gamma \frac{\partial \hat{n}}{\partial \gamma} \right] \right\rangle}{\left\langle \left| \rho^{-3} \right| \left[1 - \frac{2}{9} \left(\hat{\beta} \cdot \hat{n} \right)^2 + \frac{11}{18} \left| \gamma \frac{\partial \hat{n}}{\partial \gamma} \right|^2 \right] \right\rangle}$$

and the subsequent polarization buildup time is

$$\tau_{eq}^{-1} = \tau_{ST}^{-1} + \tau_d^{-1}$$

with

🍋--•;6-- 🌔 🛹

$$\tau_d^{-1} = \tau_{ST}^{-1} \left[-\frac{2}{9} \left(\hat{\beta} \cdot \hat{n} \right)^2 + \frac{11}{18} \left| \gamma \frac{\partial \hat{n}}{\partial \gamma} \right|^2 \right]$$

June 26 – July 1, 2020

In a planar circular accelerator

- The radiative polarization buildup in HERA
 - Best achieved polarization is around 75%
 - Polarization buildup time ~ 1.5 hours

Fig. 19: Polarization P versus the time t in the storage ring HERA at 26.7 GeV.

J. Buon, J. P. Koutchouk, Polarization of Electron and Proton Beams

June 26 – July 1, 2020

Spin Orbit Coupling

Thomas BMT Equation: (1927, 1959)

→∲-••-•∳<

L. H. Thomas, Phil. Mag. 3, 1 (1927); V. Bargmann, L. Michel, V. L. Telegdi, Phys, Rev. Lett. 2, 435 (1959)

$$\frac{d\vec{S}}{dt} = \frac{e}{\gamma m}\vec{S} \times \left[(1+G\gamma)\vec{B}_{\perp} + (1+G)\vec{B}_{\parallel} + \left(G - \frac{\gamma}{\gamma^2 - 1}\right)\frac{\vec{E} \times \vec{\beta}}{c}\right]$$
$$\frac{d\vec{S}}{ds} = \Omega(x, p_x, y, p_y, z, \delta)\hat{n} \times \vec{S}$$

- stable spin direction \hat{n} , an invariant direction that spin vector aligns to, when the particle returns to the same phase space

$$\widehat{n}(I_z, \phi_z, \theta) = \widehat{n}(I_z, \phi_z + 2\pi, \theta)$$

Here, I_z and ϕ_z are the 6-D phase-space coordinates $(x, p_x, y, p_y, z, \delta)$

• For particles on closed orbit, stable spin direction can be computed through one-turn spin transfer matrix. \hat{n} is also know as \hat{n}_0 June 26 – July 1, 2020 Beam Polarization and Polarimetry @ EIC

Depolarizing mechanism in a synchrotron

• For particles not on closed orbit, since the betatron tunes are typically non-integer, \hat{n} can be significantly away from \hat{n}_0 when

$$Q_s = k + k_x Q_x + k_y Q_y + k_z Q_z$$

where k_x , k_y , k_z are horizontal, vertical and synchrotron tunes, respectively.

 These resonances contribute to the depolarization time and result to much less equilibrium polarization

June 26 – July 1, 2020

Depolarizing mechanism in a synchrotron

• For particles not on closed orbit, since the betatron tunes are typically non-integer, \hat{n} can be significantly away from \hat{n}_0 when

$$Q_s = k + k_x Q_x + k_y Q_y + k_z Q_z$$

where k_x , k_y , k_z are horizontal, vertical and synchrotron tunes, respectively.

- These resonances contribute to the depolarization time and result to much less equilibrium polarization
- Sources of these resonances
 - Miss-alignment of quadrupole
 - Devices that deviate \hat{n} from \hat{n}_0
 - Other high order fields

Beam Polarization and Polarimetry @ EIC

June 26 – July 1, 2020

Overcome depolarizing mechanism

 In general, the effect of these resonances grows with energy. For planar electron storage rings, a simply scaling law*

$$p_{eq} \approx \frac{92.4\%}{1 + \alpha^2 E^2}$$

Where α is the lattice related factor

- To overcome these resonances in a storage ring, it is critical to either break the resonance condition such as utilizing Siberian snakes, or adapt the lattice optics to minimize the spin orbit coupling strength $\left|\gamma \frac{\partial \hat{n}}{\partial \gamma}\right|^2 \sim (1 + G\gamma)^2 \sum_k |c_k|^2 / (G\gamma - k)^2$ via spin matching
 - Strong spin matching: full spin transparent at all harmonics
 - Practically very difficult
 - Harmonic spin matching: minimize the driving term at the nearby harmonics
 Has been implemented in various rings

* S R Mane, Yu M Shatunov and K Yokoya, *Spin-polarized charged particle beams in highenergy accelerators*, Rep. Prog. Phys. 68 (2005) 1997–2265

Achieved Performance of Polarized e Beams

June 26 – A Brief History of the LEP Collider, R. Assmann, M. Lamont, S. Myers for the LEP team

- HERA was the 1st high energy collider, that employed local spin rotators to provide longitudinally polarized electron
- A spin rotator consists of a sequence of horizontal and vertical orbit correctors that interleaves with each other to precess spin vector from vertical to longitudinal

June 26 – July 1, 2020

• A spin rotator induces large orbital excursions in both planes and tilts the \hat{n} away from vertical

••••••••

- A spin rotator induces large orbital excursions in both planes and tilts the \hat{n} away from vertical
 - Spin matching to make the section between spin rotators spin transparent to the 1st order

• With the HEAR mini-rotator

 Polarization was later-on improved to 65% after a dedicated spin-match optics was implemented

D.P. Barber et al. /Physics Letters B 343 (1995) 436-443

June 26 – July 1, 2020

• With 3 pairs of rotators

Figure 1: Polarization optimizations with 3 pairs of spin rotators in HERA-e on the 1st of March 2003. A polarization of 54% was ultimately obtained.

Georg Hoffstaetter et al, Experiences with the HERA beams, ICFA Newsletter May 2003

Colliders with polarized beams

- Polarized hadron colliders:
 - RHIC@BNL: polarized protons
- Unlike the e+e- colliders, polarized beam starts from the source, and polarization need to survive through acceleration chain
 - Polarized ion source
 - Pre-Injector: LINAC, booster
 - Injector
 - Collider

Principle of full Siberian snake

Use one or a group of snakes to make the spin tune to be at ¹/₂

Break the coherent buildup of the perturbations on the spin vector

Snake Depolarization Resonance

- Condition

- S. Y. Lee, Tepikian, Phys. Rev. Lett. 56 (1986) 1635
- S. R. Mane, NIM in Phys. Res. A. 587 (2008) 188-212

$$mQ_y = Q_s + k$$

- even order resonance
 - Disappears in the two snake case if the closed orbit is perfect

- odd order resonance

• Driven by the intrinsic spin resonances

How to avoid a snake resonance?

- Adequate number of snakes

- Minimize number of snake resonances to gain more tune

Avoid polarization losses due to snake resonance

- Adequate number of snakes

$$N_{snk} > 4 | e_{k,\max} | \qquad Q_s = \bigotimes_{k=1}^{N_{snk}} (-1)^k f_k$$

 f_{k} is the snake axis relative to the beam direction

- Keep spin tune as close to 0.5 as possible

- Source of spin tune deviation
 - Snake configuration
 - Local orbit at snakes as well as other spin rotators. For RHIC,

angle between two snake axes

$$Q_s = \frac{|Df|}{p} + (1 + Gg) \frac{Dq}{p}$$
 H orbital angle between two snakes

- Source of spin tune spread

- momentum dependence due to local orbit at snakes
 - equalize the dispersion primes at both snakes
- betatron amplitude dependence

June 26 – July 1, 2020

How to avoid a snake resonance?

- Adequate number of snakes
- Keep spin tune as close to 0.5 as possible
- Precise control of the vertical closed orbit
- Precise optics control
 - Choice of working point to avoid snake resonances
 - Minimize the linear coupling to avoid the resonance due to horizontal betatron oscillation

Precise Beam Control

- Tune/coupling feedback system: acceleration close to 2/3 orbital resonance
- Orbit feedback system: rms orbit distortion less than 0.1mm

June 26 – July 1, 2020

RHIC Polarization Performance

RHIC, the world's 1st high energy pp collider

June 26 – July 1, 2020

https://www.agsrhichome.bnl.gov/RHIC/Runs/

Beam-beam Effect on Polarization

- Beam-Beam force on spin motion
 - For a Gaussian round beam, particle from the other beam sees

Polarization Performance and Beam-beam

- Beam-Beam induces tune shift of $X = \frac{Nr_0 b^*}{4\rho g S^2}$, as well as
- Both HERA and LEP observed the beam-beam effect on the electron beam polarization
 80
- RHIC has observed very mild t during store

polarization of positrons colliding/not colliding with protons at HERA. D.P. BARBER, arXiv:physics/9901040v1 Beam Polarization and Polarimetry @ EIC

June 26 – July 1, 2020

Summary

- Polarized beams have been successfully used for exploring high energy particle and nuclear physics
- The upcoming EIC, as well as future high energy collider proposals (FCC-ee, ILC, CEPC, etc) requires
 - High luminosity with high polarized lepton and hadron beams
 - Polarized beams at very high energy
- The challenges ahead
 - Novel techniques in overcoming depolarizing effects
 - Existing spin orbit tracking and simulation codes, i.e. SLIM, SITROS, SLICKTRACK, PTC@Bmad, zgoubi etc met challenges in balancing computation power and accuracy
 - Innovative spin orbit tracking and simulation such as the latest discovery of a complete system of spin-orbit stochastic ODEs by K. Heinemann et al
 - More robust and fast spin matching algorithms

June 26 – Novel techniques in spin manipulation

Look forward to polarized EIC!!!

- Highly polarized beams
 - Proton 80%
 - Electron 85%
 - Polarized Helium
- High luminosity

•--••-•

1.3x10³⁴ cm⁻²s⁻¹

