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o Colliders with polarized beams

L

 Polarized e+e- colliders

* As early as early 70s like ACO, VEPP-2

* Most are circular and the polarization was built up during the store
time via Sokolov-Ternov effect (ST effect)
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The difference of probability between the two scenarios allows the
radiative polarization build up .




e In a planar urcular accelerator

* The ST induced radiative polarization buildup is given

P(t) = Psp(1 — e~ /os1),
where Por = 8/5v3 = 0.9237
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S. Mane et al, Spin-polarized
charged particle bams

* For HERA, the estimated ST polarization buildup time for its 26.7
GeV electrons is about 43 mins



e In a planar urcular accelerator

* In reality, the emission of a photon can yield a sudden change of
the particle’s energy and induce a spin diffusion mechanism that
leads to loss of polarization. The equilibrium polarization is the
combination of the two effects
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Lo In a planar circular accelerator
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* The radiative polarization buildup in HERA

* Best achieved polarization is around 75%
* Polarization buildup time ~ 1.5 hours
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Fig. 19: Polarization P versus the time ¢ in the storage ring HERA at 26.7 GeV.

J. Buon, J. P. Koutchouk, Polarization of Electron and Proton Beams



Spin Orbit Coupling

L. H. Thomas, Phil. Mag. 3, 1 (1927); V.

Thomas BMT Equation: (1927: 1959) Bargmann, L. Michel, V. L. Telegdi, Phys,

Rev. Lett. 2, 435 (1959)
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stable spin direction 7, an invariant direction that spin vector aligns to,
when the particle returns to the same phase space

A(lz, ¢ 0) = ﬁ(Iz: ¢, + 2m, 0)

Here, I, and ¢, are the 6-D phase-space coordinates (x, DY) Py Z) 5)

For particles on closed orbit, stable spin direction can be computed
through one-turn spin transfer matrix. 71 is also know as 71,



. Depolarizing mechanism in a synchrotron
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For particles not on closed orbit, since the betatron tunes are
typically non-integer, 1 can be significantly away from 71, when

Qs = k + k,Qx + kyQy + k,Q,

where k,, k,, k, are horizontal, vertical and synchrotron
tunes, respectively.

- These resonances contribute to the depolarization time and

result to much less equilibrium polarization
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. Depolarizing mechanism in a synchrotron
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- For particles not on closed orbit, since the betatron tunes are
typically non-integer, 1 can be significantly away from 71, when

Qs = k + k,Qx + kyQy + k,Q,

where k,, k,, k, are horizontal, vertical and synchrotron
tunes, respectively.

« These resonances contribute 100
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, Overcome depolarizing mechanism
A - - - B

- In general, the effect of these resonances grows with energy. For
planar electron storage rings, a simply scaling law*

92.4%
Peq = 114252

Where « is the lattice related factor

- To overcome these resonances in a storage ring, it is critical to
either break the resonance condition such as utilizing Siberian

snakes, or adapt the lattice optics to minimize the spin orbit
2

~(1+ Gy)? Xilckl?/(Gy — k)? via spin matching

> Strong spin matching: full spin transparent at all harmonics
o Practically very difficult

coupling strength ‘yg—’y‘

> Harmonic spin matching: minimize the driving term at the nearby harmonics
o Has been implemented in various rings

* S R Mane, Yu M Shatunov and K Yokoya, Spin-polarized charged particle beams in high-
energy accelerators, Rep. Prog. Phys. 68 (2005) 1997-2265



Achleved Performance of Polarized e Beams
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A Brief History of the LEP Collider, R. Assmann, M. Lamont, S. Myers for the LEP team
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HERA polarization
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« HERA was the 15t high energy collider, that employed local spin
rotators to provide longitudinally polarized electron

« A spin rotator consists of a sequence of horizontal and vertical orbit
correctors that interleaves with each other to precess spin vector from

vertical to longitudinal _
'transverse' Polarimeter (TPOL)

Spin-Rotator 'longitudinal' Polarimeter (LPOL)



, HERA polarization

« A spin rotator induces large orbital excursions in both planes and tilts the
7 away from vertical
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HERA polarization
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« A spin rotator induces large orbital excursions in both planes and tilts the
7 away from vertical

« Spin matching to make the section between spin rotators spin transparent to the

1st order

£ !+ Inaddition, it is also critical to spin match at the entrance and exit of the rotator,
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HERA polarlzatlon
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« Polarization was later-on improved to 65% after a
dedicated spin-match optics was implemented

D.P. Barber et al. /Physics Letters B 343 (1995) 436-443



HERA polarization
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« With 3 pairs of rotators
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Figure 1: Polarization optimizations with 3 pairs of spin rotators in HERA-e on the 1st of March
2003. A polarization of 54% was ultimately obtained.

Georg Hoffstaetter et al, Experiences with the HERA beams, ICFA Newsletter May 2003



Colliders with polarized beams

 Polarized hadron colliders:
 RHIC@BNL.: polarized protons

« Unlike the e+e- colliders, polarized beam starts from the
source, and polarization need to survive through
acceleration chain

« Polarized ion source

* Pre-Injector: LINAC, booster
 Injector

» Collider



e RHIC pC Polarimeters
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Principle of full Siberian snake
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Snake Depolarization Resonance

* S.Y. Lee, Tepikian, Phys. Rev. Lett. 56 (1986) 1635
e S.R.Mane, NIM in Phys. Res. A. 587 (2008) 188-212

mQ, =0 +k

even order resonance

e Disappears in the two snake case if the closed orbit is perfect
odd order resonance

® Driven by the intrinsic spin resonances
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. How to avoid a snake resonance?
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- Adequate number of snakes
N(S‘k
Nsnk > 4‘ek,max‘ Qs = a(_l)k fk

k=1
fk is the snake axis relative to the beam direction

- Minimize number of snake resonances to gain more tune
spaces for operations

He-3 with dual snake He-3 with six-snake
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Avoid polarization losses due to snake resonance

L

- Adequate number of snakes
N(S‘k
Nsnk > 4‘ek,max‘ Qs = a(_l)k fk

k=1
fkis the snake axis relative to the beam direction
- Keep spin tune as close to 0.5 as possible
- Source of spin tune deviation
- Snake configuration
- Local orbit at snakes as well as other spin rotators. For RHIC,

Dy« H orbital angle

| angle between two snake axes \"D f[
DO =— + (1+Gg)—F  between two snakes

- Source of spin tune spread

- momentum dependence due to local orbit at snakes
equalize the dispersion primes at both snakes

- betatron amplitude dependence



How to avoid a snake resonance?
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- Adequate number of snakes
- Keep spin tune as close to 0.5 as possible
- Precise control of the vertical closed orbit

- Precise optics control

— Choice of working point to avoid snake resonances
— Minimize the linear coupling to avoid the resonance due to
horizontal betatron oscillation



Precise Beam Control
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. RHIC Polarization Performance
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maximum beam-beam spin kick [2x]

Beam-beam Effect on Polarization

- Beam-Beam force on spin motion
- For a Gaussian round beam, particle from the other beam sees

e

E= W noexp-l 0 Blp P
2 pe.lr 2s° C

-The effect is much weaker than the
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Polarization Performance and Beam-beam

A 1“? e . —— - .
. . Nrb
- Beam-Beam induces tune shift of x = —2 ~, as well as
incoherent tune spread 4pgs

- Both HERA and LEP observed the beam-beam effect on the
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polarization of positrons colliding/not
colliding with protons at HERA.

D.P. BARBER, arXiv:physics/9901040v1



Summary

Polarlzed beams have been successfully used for explorlng hlgh
energy particle and nuclear physics

The upcoming EIC, as well as future high energy collider proposals
(FCC-ee, ILC, CEPC, etc) requires

« High luminosity with high polarized lepton and hadron beams
. Polarized beams at very high energy

The challenges ahead

« Novel technigues in overcoming depolarizing effects

« Existing spin orbit tracking and simulation codes, i.e. SLIM,
SITROS, SLICKTRACK, PTC@Bmad, zgoubi etc met challenges
In balancing computation power and accuracy

« Innovative spin orbit tracking and simulation such as the latest
discovery of a complete system of spin-orbit stochastic ODEs by K.
Heinemann et al

> More robust and fast spin matching algorithms
« Novel technigues in spin manipulation



. Look forward to polarized EIC!!!
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« Highly polarized beams
 Proton 80%
* Electron 85%
* Polarized Helium

« High luminosity
e 1.3x103%4 cm—s

Electron
Injector (RCS)

(Polarized)




