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 Absolute polarization:
                                    absolute scale

 Beam details:
                        time dependence, bunch structure

Polarimetry requirements
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 Transverse L/R Single Spin Asymmetry (SSA) ϵ:

 Proportionality constant 'analyzing power' A
N
:

  - lepton polarimetry: known from QED
  - hadron polarimetry? It's actually what spin physics studies

 Absolute polarimeter: polarized beam & target, both spin states ↑↓:

Requirements: absolute polarization

p tgt.

p beam

p tgt.

p beam

average over beam spins:
 ϵ

target
 = A

N
 P

target

average over target spins:
 ϵ

beam
 = A

N
 P

beam

 Measure ϵ
beam

, ϵ
target

, P
target

:

                           ⇒ independent of details of A
N
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 RHIC stores last ~6-8 hours:
      polarization will inevitably decay: P(t) = P

t=0
 e-t/τ

          ⇒ need to measure polarization lifetime τ

 P not uniform transversely (x) across beam:
   - beam intensity:        I(x) ∝ Gaus(x,σ

I
)

   - polarization: P(x) = P
0
 Gaus(x,σ

P
)

 Transverse profile parameter: R = (σ
I
/σ

P
)2

 Convolutions in 2d (x,y):
  - average P across beam: P

avg
 = 〈 P(x)⊗I(x) 〉

I
 = P

0
/(1+R)

  2 beams 1,2 polarizations P
1
,P

2

  - single spin asym. w.r.t. 1: P
SSA1

 = 〈 P
1
(x)⊗I

1
(x)⊗I

1
(x) 〉

I1,I2
 = P

01
/(1+½R)

  - double spin asym.: P2

DSA
 = 〈 P

1
(x)⊗P

2
(x)⊗I

1
(x)⊗I

2
(x) 〉

I2,I2
 = P

01
P

02
/(1+R)

 Profile corrections needed for collider experiments
        ⇒ need to measure polarization profile R

Requirements: beam details

W. Fischer and A. Bazilevsky, Phys. Rev. ST Accel. Beams 15, 041001 (2012)
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 Polarized hydrogen (Hjet) polarimeter:
                                                               absolute P scale
                                                               slow, coarse grained
 p-carbon (pC) polarimeter:
                                             relative P scale
                                             fast, fine grained
 pC/Hjet normalization:
                                     fill time dependence
                                     data groups for normalization

Implementation @ RHIC
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Substantial installation @ RHIC IP12
 Polarized atomic H source
         1.2×1012 atoms/cm2

 Beams cross but don't collide
  inside target / scattering chamber

 P
target

 measured w/ Breit-Rabi polarim.

          P
target

 ≈ 96%

Hjet polarimeter

Inside scat. chamber:
 Si strip detectors
 Blu, Yel beams cross in
 target (but don't collide)
 Separate Blu, Yel
  downstream sides
12 strips, 3.75 mm pitch

~5 m tall
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 Si strips E scale calibrated w/ Am,Gd α sources
 Si strips → WFDs: pulse amplitude & time
 Proton PID via TOF: TOF ∝1/√E

kin
 (banana curve)

Hjet polarimeter

 Asymmetry from 'cross ratio' (extra slide)
 - count hits separately: L/R side detectors
                                   +/- beam spin states
 - cancelled: L/R detector acceptances
                    +/- beam # protons

 Strip # ∝ scattering angle
 Select E range / strip: reject inelastic pp → ppX:
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 6 Si strip detectors around beam
 C target passed across beam:
  P(x) ⇒ polar. profile

pC polarimeters

 Nominal target size:
  2.5 cm × 10 μ × 50 nm
  that's ~230 C atoms thick!

 2 pC polarims. / beam
  horiz., vert. tgt. each: 2d profiles

 Passed across beam & back
 ~2-5 sec. in beam each pass
  lifetime: few - few hundred passes

6 tgts.
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 Transverse x no direct measure
  rate→x: x/σ

beam
 ∝ Gaus-1(rate)  

 Measure P in bins of x/σ
beam

:

 R = (σ
beam

/σ
P
)2

pC polarimeter
 E scale calibrated w/ Am,Gd α sources
 Si strips → WFDs: amplitude & time
 Carbon PID via TOF: TOF ∝1/√E

kin
 (curve)

 Fit to curve ⇒ t0, Si dead layer

 Fit 6 det. asym. w.r.t. beam +/-,
  generalization of cross ratio:
 - max. asymmetry ϵ

0

 - beam spin tilt from vert. φ
0

 - asymmetry +/- beam λ

intensity

polarization
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 pC measurements: before 24→255 GeV ramp (✚)
                                 start of physics store

                                  middle of physics store (or every 3 hours)
                                 end of physics store
 pC results, one polarim., one fill: 

pC polarimeters 

P(t) profile R(t)

 Measured: P ∝ e
-t/τ 

≈ 1 - t/τ; τ ≈ 200-400 hours 

   lifetime τ used in pC/Hjet normalization ➘

aside:
 P drops with time, R grows with time
 Beam spin physics: P↔R inversely related ✓
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 All Run17 Hjet Blu beam, each fill:
 
 Jet measures beam current I(t)
  weighted average P thru fill:
   P

Hjet
 = ∫ P(t)I(t)dt / ∫ I(t)dt 

pC/Hjet normalization

I(t) one fill

 pC fill result: correct to I(t) avg.,
                       normalize to P

Hjet
:

 Normalization each year for:
  - each of 4 pC polarimeters
  - if statistics allow, individual
     targets of pC polarimeter
 Scale uncertainty: ~1-1.5%
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 Results for collider experiments:
                                                    profile corrected P

 Info for beam-spin physics:
                                             longitudinal polarization profile
                                             spin tilt from vertical
                                             spin tune measurements
                      

 Polarimetry results
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 Polarization corrected with profile R for
  colliding Single Spin Asym. measurements: P

SSA

 Table provides P
SSA

 each beam, fill:

         - P
0
, dP/dt: P(t) = P

0
 + dP/dt⋅(t-t

0
)

         - Unix time stamp for t
0

            specifies P for period in fill when data sets collected

 For Double Spin Asymmetry, lowest order in R:
                 P2

DSA
 ≈ P

SSABlu
⋅P

SSAYel

Results for experiments
                                                                     --------       BLUE       --------           --------      YELLOW      --------
Fill      Energy    Start                Stop                P0       +-  d(P0)   dP/dt +- d(dP/dt) P0     +- d(P0)   dP/dt +- d(dP/dt)
20512   255     1487656902  1487658226   61.97 +-  2.95   -0.18 +-  0.40       64.06 +-  3.30   -0.30 +-  0.38
20519   255     1487734097  1487776187   53.80 +-  2.28   -0.68 +-  0.28       54.13 +-  3.62   -0.30 +-  0.38
20522   255     1487807184  1487862390   62.81 +-  1.68   -0.29 +-  0.14       54.75 +-  1.76   -0.41 +-  0.14
20532   255     1487906101  1487951885   63.73 +-  2.04   -0.23 +-  0.19       55.63 +-  1.69   -0.42 +-  0.16
etc.



14

 Well known transverse polar. profile:
                    polarization drops at edges of beam
 Longitudinal profile?
 Asymmetry in t bins along proton bunch: 

Longitudinal polarization profile

Hjet pC

 Polarization lower center of bunch; beam-beam effect?
 Not anticipated, beam physicists considering...
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 No tilt @ 24 GeV, significant tilt @ 255 GeV:
                                                                        10-15° (Blu), 7-9° (Yel)
 No tilt other store energies 100, 250 GeV
 Not anticipated, beam physicists considering...
Also:
 Hjet only measures vertical spin component,
         correction applied in pC/Hjet normalization

Spin tilt
 pC asymmetry fit: φ

0
, spin tilt from vertical

 Same fill, injection & store energies: 

injection 24 GeV store 255 GeV
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φ
0

 'Spin flipper' in RHIC: AC&DC dipoles, manipulate proton spin:

Spin tune ν
s
 measurement

 Pulsed mode: flip spin orientation
 Continuous mode: precess spin about stable axis:
  driver ν

osc
; opening angle tanθ ∝ 1/(ν

s
-ν

osc
)

 Measure θ ⇒ measure ν
s

 pC can measure spin tilt φ
0
 in xy plane

 driver phase → pC DAQ:
         measure φ

0
 bins of driver phase:

 Amplitude of φ
0
 oscillation ~ θ

 1st nondestructive measurement of ν
s

  @ high energy collider*

*H. Huang et al., Phys.Rev.Lett. 122 (2019) 20, 204803
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 Polarized atomic target H
2
 contamination:

                                                                   Hjet P scale
 Backgrounds:
                        Hjet pp→pp elastic selection
 E-scale calibration:
                                E

measured
↔A

N
 analyzing power

 Carbon targets:
                          lifetime
                          non-rigidity 
                          E loss in target

Limitations @ RHIC
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 Hjet target: polarized atomic H
1
↑

 Molecular H
2
 contamination:

           likely unpolarized, dilution of target P
 Sources: H

2
 not dissociated in beam

                recombined H
2
 from exit chambers

 Long time largest systematic uncert.:
  - test bench measurement 2000's,
     not in situ, large uncertainty
 2017 in situ measurements:
  - special runs dissociator off, pure H

2
 jet

  - collimators removed, measure broad distribution
     H

2
 back-scattered from exit chambers

 Collimator removal handicapped elastic background measurement
 Needed: continuous monitor of  H

2
 contamination

 Limitation on Hjet P scale

Hjet molecular H
2
 contamination
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 Hjet select protons via TOF ∝1/√E
kin

 relation (curve):

 Absolute P measurement requires
  pure protons from pp→pp

 Clear background leaking under signal
 (from mountain ● outside cut) 
 Background was estimated &
 subtracted from kinematic distributions
 No longer feasible when collimators
  removed for H

2
 measurement

 Source not clear: beam bkg., pp→X prompts, other?
 Under study
 Limitation on Hjet P systematic uncert.

 Note: pC has similar bkg. under carbon signal
 Not serious, calibrated out in pC/Hjet calibration
 But will be problem at EIC, more later...

Backgrounds



dE/dz
in Si
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 Measure carbon 0.4<E
kin

<0.9 MeV

 A
N
 steep dependence on E

kin
:

   sensitive to E-scale calib.
 Fit to TOF vs. E

deposited
 params.:

  - T
0

  - Si dead layer E
kin

-E
deposited

 
Significant systematics

E-scale calibration

dead layer
T

0

 dead layer
  ~ 0.2 μ
 α calibration: negligible effect from dead layer
 0.4<E

kin
<0.9 MeV carbon range 1-2 μ:

     dead layer 10-20% effect on C energy
 Large syst. uncert.: dead layer, E calib.
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 Targets often happily passing through beam:

 But eventually: 

C target lifetime

 Heating at edge
 Discs added, reduce
|E| field, > lifetime:

 Still, targets survive
 few - few 100's
 passes thru beam:
 Break:
    → new target
 Systematics (A

N
)

 different targets
 Lose all 6 targets on ladder:
 break in RHIC ops to replace

target lifetime
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 Measure of profile R (slide 9) requires 
   rate ↔ transverse position related:
                                I(x)∝ Gaus(x,σ

I
) 

 Only true for rigid target; not true:
       - target covers varying values of x
       - target material in beam varies with x
 Limiting systematic effect on profile R

C target non-rigidity
 Sometimes target wiggles:

p-beam p-beam

 Sometimes target rigid:
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 pC→pC scattering inside target
 Recoil C passes through target
  material en route to detector
 Loses energy via dE/dx: E

scat
→E

det

 Nominal target thickness 50 nm
 but target orientation varies: Δx few 100 nm

           E
scat

-E
det

 ~ 100 keV

 Asymmetry A
N
(E

scat
),

  measure in 0.4<E
det

<0.9 MeV

 Lower A
N
 from higher E

scat
:

 Varying: target orientation
                → E loss  
                → measurement A

N

 Limitation on stability pC measurement

E loss in target detector

target



E
scat

E
det
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 High bunch ×ing frequency:
                                              TOF > bunch spacing
                                              overlap signal/bkg. different bunches
 Target viability:
                          heating from RF, dE/dx

Challenges RHIC→EIC
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 Carbon TOF ~20-90 nS; bunch spacing 11 nS
 carbons from several bunch ×ings in system simultaneously:

120→1160 bunches

 Need to sort (Ekin,TOF) bands → bunch ×ings
 Hjet: similar difficulties

RHIC data

test
pulse

EIC toy MC: smear L
bunch

 0.2 nS
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 EM pulse during beam crossing:
           WFD triggering masked ~ beam ×ing time

120→1160 bunches

 Need to sort (Ekin,TOF) segments → bunch ×ings
 Hjet: similar difficulties

RHIC data

test
pulse

EIC toy MC: smear L
bunch

 0.2 nS

trig. masked

trig. masked



test
pulse

background

Signal/background overlap

 @ RHIC: asym. calibrated out pC/Hjet
 @ EIC: 
 - overlaps w/ adjacent bunches
 - may be same/opposite +/- beam spin
 - dilute/enhance asymmetry
 - a real mess...
 Hjet: similar difficulties

background
asym., 10 fills

 Non-carbon background under signal, nature unclear
 Events this region small non-zero asymmetry:

27
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RHIC→EIC
 same # protons / bunch, shorter bunch length ⇒ higher E fields
 higher bunch ×ing frequency ⇒ RF effects

Target viability Results from
P. Thieberger 

 Model using Particle Studio:

 Consider carbon sublimation:
   - benchmark T = 2500 K = 2227 °C
   - sublimation rate (plot), target area density
⇒ target @2500 K sublimates away ~ 20 sec
                                (a few pC measurements)
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 Beam dE/dx heating:

Target viability Results from
P. Thieberger 

 @ RHIC: targets close to rapid sublimation
                estimated lifetime ~440 sec, few 100 measurements
                consistent with observed target lifetime
 @ EIC: targets well into rapid sublimation (few seconds)

SERIOUS DOUBTS: TARGET VIABILY @ EIC

 Target in beam, RF heating:

 Simulated temp. along target center → edge



30

 Discussed here direct application:

       RHIC proton polarimetry → EIC

 EIC will also have polarized light ions (d, 3He)

 Existing RHIC polarimeters may be applied

  See talks by: Andrei Poblaguev
                        Ana Nunes

Light ion polarimetry
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 Over last decade+ polarimetry evolved with RHIC,
  now providing:
  - physics quality beam P for experiments
  - beam spin properties for beam spin physics

 Polarimeters ~reached technical limits, mainly:
  - backgrounds
  - detector calibrations
  - carbon targets

 Limitations remain at EIC, and worse, including:
  - signal/background overlaps
  - carbon target viability

 Clear need: new ideas, R&D, ...

Summary



Extras



 If have one beam w/ spin up, and detectors
  left (L) and right (R) of beam, can measure
  asym. but would need to know relative
  acceptances of L/R detectors

Cross-ratio (for non-spin experts)

L det. R det.

L det.

33

R det.L det.

*http://www4.rcf.bnl.gov/~cnipol/Documentations/Papers/TechniquesForMeasurementOfSpinHalfAndSpin1PolarizationAnalyzingTensors.pdf

*G. Ohlsen and P.W. Keaton, NIM 109 (1973) 41

 If have one detector left of beam, and beam
  bunches w/ spin up (+) and down (-), can
  measure asym., but would need to know
  relative luminosities of +/- beams

 If have both L/R detectors and +/- bunches,
  acceptances and luminosities cancel out
  in the “cross-ratio”*:



pC detectors
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Si strip detector & bonds
on ceramic board

Si strip
detector

RF mesh

α sources

detector viewed from inside
scattering chamber



Hjet background
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Mountain of noise
leaks under signal
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