Proton polarimetry: RHIC→EIC

W. Schmidke BNL for the RHIC polarimetry group Polarization/polarimetry @ EIC workshop June 29, 2020

Polarimetry requirements

absolute, beam details

Implementation @ RHIC

Hjet absolute, pC relative

Results @ RHIC

for experiments, beam properties

- Limitations @ RHIC
- Challenges RHIC→EIC

Polarimetry requirements

• Absolute polarization:

absolute scale

Beam details:

time dependence, bunch structure

Requirements: absolute polarization

left

p = L

right

• Transverse L/R Single Spin Asymmetry (SSA) ϵ :

$$\epsilon = \frac{N_R - N_L}{N_R + N_L} = P \cdot A_N$$

Proportionality constant 'analyzing power' A_N:

- lepton polarimetry: known from QED
- hadron polarimetry? It's actually what spin physics studies

Absolute polarimeter: polarized beam & target, both spin states ↑↓:

Requirements: beam details

• RHIC stores last ~6-8 hours:

polarization will inevitably decay: $P(t) = P_{t=0} e^{-t/\tau}$

 \Rightarrow need to measure polarization lifetime τ

- P not uniform transversely (x) across beam: - beam intensity: $I(x) \propto Gaus(x,\sigma)$
 - polarization: $P(x) = P_0 Gaus(x, \sigma_p)$
- Transverse profile parameter: R = $(\sigma_1/\sigma_p)^2$
- Convolutions in 2d (x,y):
 - average P across beam: $P_{avg} = \langle P(x) \otimes I(x) \rangle_{I} = P_{0}/(1+R)$
 - 2 beams 1,2 polarizations P_1, P_2
 - single spin asym. w.r.t. 1: $P_{SSA1} = \langle P_1(x) \otimes I_1(x) \otimes I_1(x) \rangle_{11,12} = P_{01}/(1+1/2R)$
 - double spin asym.: $P_{DSA}^2 = \langle P_1(x) \otimes P_2(x) \otimes I_1(x) \otimes I_2(x) \rangle_{12,12} = P_{01}P_{02}/(1+R)$
- Profile corrections needed for collider experiments

⇒ need to measure polarization profile R

W. Fischer and A. Bazilevsky, Phys. Rev. ST Accel. Beams 15, 041001 (2012)

4

Implementation @ RHIC

Polarized hydrogen (Hjet) polarimeter:

absolute P scale slow, coarse grained

• p-carbon (pC) polarimeter:

relative P scale fast, fine grained

• pC/Hjet normalization:

fill time dependence data groups for normalization

Hjet polarimeter

- <u>Substantial installation @ RHIC IP12</u>
 Polarized atomic H source 1.2×10¹² atoms/cm²
- Beams cross but don't collide inside target / scattering chamber
- P_{target} measured w/ Breit-Rabi polarim. $P_{target} \approx 96\%$

Inside scat. chamber:

- Si strip detectors
- Blu, Yel beams cross in target (but don't collide)
- Separate Blu, Yel downstream sides
 12 strips, 3.75 mm pitch

Hjet polarimeter

- \bullet Si strips E scale calibrated w/ Am,Gd α sources
- Si strips \rightarrow WFDs: pulse amplitude & time
- Proton PID via TOF: TOF $\propto 1/\sqrt{E_{kin}}$ (banana curve)
 - Strip $\# \propto$ scattering angle

Ekin (MeV)

3

• Select E range / strip: reject inelastic pp \rightarrow ppX:

 Asymmetry from 'cross ratio' (extra slide)
 - count hits separately: L/R side detectors +/- beam spin states

cancelled: L/R detector acceptances
 +/- beam # protons

pC polarimeters

- 6 Si strip detectors around beam
- C target passed across beam:
 - $P(x) \Rightarrow polar. profile$

 2 pC polarims. / beam horiz., vert. tgt. each: 2d profiles

- Nominal target size:
 2.5 cm × 10 μ × 50 nm that's ~230 C atoms thick!
- Passed across beam & back
 ~2-5 sec. in beam each pass
 lifetime: few few hundred passes

pC polarimeter

10

transverse x/ σ_{beam}

• E scale calibrated w/ Am,Gd α sources • Si strips \rightarrow WFDs: amplitude & time • Carbon PID via TOF: TOF $\propto 1/\sqrt{E_{kin}}$ (curve) • Fit to curve \Rightarrow t0, Si dead layer 1200 1400 Deposited Energy, keV Fit 6 det. asym. w.r.t. beam +/-, 2.202 / 3 <u>×10^{−3}</u> 0.006047 ± 0.0002629 symmetry 0.2606 ± 0.05964 generalization of cross ratio: 0.009154 ± 0.0002085 - max. asymmetry ϵ_{0} - beam spin tilt from vert. ϕ_{α} - asymmetry +/- beam λ polarization Polarizatic Transverse x no direct measure 0.3 rate \rightarrow x: x/ $\sigma_{\text{beam}} \propto \text{Gaus}^{-1}(\text{rate})$ ${\scriptstyle \bullet}$ Measure P in bins of x/ $\sigma_{{}_{\rm beam}}$ 0.2 intensitv 0.1 • R = $(\sigma_{\text{beam}}/\sigma_{\text{P}})^2$

pC polarimeters

pC measurements: before 24→255 GeV ramp (+)

start of physics store middle of physics store (or every 3 hours) end of physics store

• pC results, one polarim., one fill:

aside:

- P drops with time, R grows with time
- Beam spin physics: $P \leftrightarrow R$ inversely related \checkmark

pC/Hjet normalization

- All Run17 Hjet Blu beam, each fill:
- Jet measures beam current I(t) weighted average P thru fill:

- pC fill result: correct to I(t) avg., normalize to P_{Hiet}:
- Normalization each year for:
 - each of 4 pC polarimeters
 - if statistics allow, individual targets of pC polarimeter
- Scale uncertainty: ~1-1.5%

Polarimetry results

• Results for collider experiments:

profile corrected P

Info for beam-spin physics:

longitudinal polarization profile spin tilt from vertical spin tune measurements

Results for experiments

					BLU	Ε		YELLOW	
Fill E	Inergy	Start	Stop	P0 +-	d(P0)	dP/dt +- d(dP/dt)	P0 +- d(l	P0) dP/dt +- (d(dP/dt)
20512	255	1487656902	1487658226	61.97 +-	2.95	-0.18 +- 0.40	64.06 +-	3.30 -0.30 -	+- 0.38
20519	255	1487734097	1487776187	53.80 +-	2.28	-0.68 +- 0.28	54.13 +-	3.62 -0.30 -	+- 0.38
20522	255	1487807184	1487862390	62.81 +-	1.68	-0.29 +- 0.14	54.75 +-	1.76 -0.41 -	+- 0.14
20532	255	1487906101	1487951885	63.73 +-	2.04	-0.23 +- 0.19	55.63 +-	1.69 -0.42 -	+- 0.16
etc.									

- Polarization corrected with profile R for colliding Single Spin Asym. measurements: P_{SSA}
- Table provides P_{SSA} each beam, fill:

$$- P_0, dP/dt: P(t) = P_0 + dP/dt \cdot (t-t_0)$$

- Unix time stamp for t_0 specifies P for period in fill when data sets collected
- For Double Spin Asymmetry, lowest order in R:

Longitudinal polarization profile

- Well known transverse polar. profile:
 - polarization drops at edges of beam
- Longitudinal profile?
- Asymmetry in t bins along proton bunch:

- Polarization lower center of bunch; beam-beam effect?
- Not anticipated, beam physicists considering...

Spin tilt

- pC asymmetry fit: ϕ_0 , spin tilt from vertical
- Same fill, injection & store energies:

• No tilt @ 24 GeV, significant tilt @ 255 GeV:

10-15° (Blu), 7-9° (Yel)

- No tilt other store energies 100, 250 GeV
- Not anticipated, beam physicists considering...
 Also:
- Hjet only measures vertical spin component, correction applied in pC/Hjet normalization

Spin tune v_s measurement

Spin flipper' in RHIC: AC&DC dipoles, manipulate proton spin:

- Pulsed mode: flip spin orientation
- Continuous mode: precess spin about stable axis: driver v_{osc} ; opening angle tan $\theta \propto 1/(v_s - v_{osc})$
- Measure $\theta \Rightarrow$ measure v_s
- pC can measure spin tilt ϕ_0 in xy plane
- driver phase \rightarrow pC DAQ: measure ϕ_0 bins of driver phase:
- Amplitude of ϕ_0 oscillation ~ θ
- 1st nondestructive measurement of $v_{_{\rm s}}$ @ high energy collider*
 - *H. Huang et al., Phys.Rev.Lett. 122 (2019) 20, 204803

Limitations @ RHIC

• Polarized atomic target H₂ contamination:

Hjet P scale

Backgrounds:

Hjet $pp \rightarrow pp$ elastic selection

• E-scale calibration:

 $E_{measured} \leftrightarrow A_N$ analyzing power

• Carbon targets:

lifetime non-rigidity

E loss in target

Hjet molecular H₂ contamination

■ Hjet target: polarized atomic H₁↑

 Molecular H₂ contamination: likely unpolarized, dilution of target P
 Sources: H₂ not dissociated in beam recombined H₂ from exit chambers

- Long time largest systematic uncert.:
 - test bench measurement 2000's, not *in situ*, large uncertainty
- 2017 in situ measurements:
 - special runs dissociator off, pure H₂ jet

- H₂ 10^{-7} atm Jet 9 mm Scattering Chamber 10^{-8} atm 30 mm H₂ 3×10^{-7} atm
- collimators removed, measure broad distribution
 - H₂ back-scattered from exit chambers
- Collimator removal handicapped elastic background measurement
 Needed: continuous monitor of H₂ contamination
- Limitation on Hjet P scale

Backgrounds

- Hjet select protons via TOF $\propto 1/\sqrt{E_{kin}}$ relation (curve):
- Absolute P measurement requires pure protons from pp→pp
- Clear background leaking under signal (from mountain
 outside cut)
 <u>@</u>
- Background was estimated & subtracted from kinematic distributions
- No longer feasible when collimators removed for H₂ measurement

- Source not clear: beam bkg., $pp \rightarrow X$ prompts, other?
- Under study
- Limitation on Hjet P systematic uncert.
- Note: pC has similar bkg. under carbon signal
- Not serious, calibrated out in pC/Hjet calibration
- But will be problem at EIC, more later...

E-scale calibration

C target lifetime

- Targets often happily passing through beam:
- But eventually:

Heating at edge
Discs added, reduce
|E| field, > lifetime:

- Still, targets survive few - few 100's passes thru beam:
- Break:
 - \rightarrow new target
- Systematics (A_N)
 - different targets
- Lose all 6 targets on ladder: break in RHIC ops to replace

C target non-rigidity

Sometimes target rigid:

Sometimes target wiggles:

p-beam

- Measure of profile R (slide 9) requires rate ↔ transverse position related: I(x)∝ Gaus(x,σ,)
- Only true for rigid target; not true:
 - target covers varying values of x
 - target material in beam varies with x
- Limiting systematic effect on profile R

E loss in target

- pC→pC scattering inside target
- Recoil C passes through target material en route to detector
- Loses energy via dE/dx: $E_{scat} \rightarrow E_{det}$
- Nominal target thickness 50 nm but target orientation varies: Δx few 100 nm E_{scat}-E_{det} ~ 100 keV
- Asymmetry A_N(E_{scat}), measure in 0.4<E_{det}<0.9 MeV
 Lower A_N from higher E_{scat}:
- Varying: target orientation \rightarrow E loss \rightarrow measurement A_N
- Limitation on stability pC measurement

Challenges RHIC→EIC

• High bunch ×ing frequency:

TOF > bunch spacing overlap signal/bkg. different bunches

Target viability:

heating from RF, dE/dx

$120 \rightarrow 1160$ bunches

 Carbon TOF ~20-90 nS; bunch spacing 11 nS carbons from several bunch ×ings in system simultaneously:

- Need to sort (Ekin,TOF) bands \rightarrow bunch xings
- Hjet: similar difficulties

$120 \rightarrow 1160$ bunches

EM pulse during beam crossing: WFD triggering masked ~ beam ×ing time

- Need to sort (Ekin,TOF) segments \rightarrow bunch xings
- Hjet: similar difficulties

Signal/background overlap

- Non-carbon background under signal, nature unclear
- Events this region small non-zero asymmetry:

- @ RHIC: asym. calibrated out pC/Hjet
 @ EIC:
 - overlaps w/ adjacent bunches
 - may be same/opposite +/- beam spin
 - dilute/enhance asymmetry
 - a real mess...
- Hjet: similar difficulties

Target viability

Results from P. Thieberger

<u>RHIC→EIC</u>

- same # protons / bunch, shorter bunch length \Rightarrow higher E fields
- higher bunch ×ing frequency \Rightarrow RF effects
- Model using Particle Studio[®]:

FIG. 2. Rate of vaporization of graphite, 2400-2800°K.

Consider carbon sublimation:

- benchmark T = 2500 K = 2227 °C
- sublimation rate (plot), target area density
- ⇒ target @2500 K sublimates away ~ 20 sec (a few pC measurements)

Target viability

Results from P. Thieberger

• Simulated temp. along target center \rightarrow edge

@ EIC: targets well into rapid sublimation (few seconds)

SERIOUS DOUBTS: TARGET VIABILY @ EIC

Light ion polarimetry

• Discussed here direct application: RHIC proton polarimetry \rightarrow EIC

- EIC will also have polarized light ions (d, ³He)
- Existing RHIC polarimeters may be applied See talks by: Andrei Poblaguev Ana Nunes

Summary

- Over last decade+ polarimetry evolved with RHIC, now providing:
 - physics quality beam P for experiments
 - beam spin properties for beam spin physics
- Polarimeters ~reached technical limits, mainly:
 - backgrounds
 - detector calibrations
 - carbon targets
- Limitations remain at EIC, and worse, including:
 - signal/background overlaps
 - carbon target viability
- Clear need: new ideas, R&D, ...

Cross-ratio (for non-spin experts)

- If have one beam w/ spin up, and detectors left (L) and right (R) of beam, can measure asym. but would need to know relative acceptances of L/R detectors
 - If have one detector left of beam, and beam bunches w/ spin up (+) and down (-), can measure asym., but would need to know relative luminosities of +/- beams
 - If have both L/R detectors and +/- bunches, acceptances and luminosities cancel out in the "cross-ratio"*: ______

$$\epsilon = \frac{\sqrt{N_{R+}N_{L-}} - \sqrt{N_{L+}N_{R-}}}{\sqrt{N_{R+}N_{L-}} + \sqrt{N_{L+}N_{R-}}}$$

*G. Ohlsen and P.W. Keaton, NIM 109 (1973) 41

*http://www4.rcf.bnl.gov/~cnipol/Documentations/Papers/TechniquesForMeasurementOfSpinHalfAndSpin1PolarizationAnalyzingTensors.pdf

33

pC detectors

Si strip detector & bonds on ceramic board

detector viewed from inside scattering chamber

Hjet background

leaks under signal