Aspects of Hadron Polarimetry & New Spin Physics tools

Experience from the Indiana Cooler and COSY

Frank Rathmann (partially on behalf of JEDI)

Beam Polarization and Polarimetry at EIC 29 June 2020 online meeting: https://indico.bnl.gov/event/7583/

Hadron polarimetry & New Spin Physics Tools

Frank Rathmann (f.rathmann@fz-juelich.de)

Introduction

In this talk, various aspects of hadron polarimetry are discussed:

- > Polarimetry in unexplored regions where, e.g., no analyzing powers exist.
- New tools for spin physics and precision experiments.
- ► Toward spin manipulation of *individual* stored beam bunches.
- In-plane spin precession provides access to new observables.

Beam polarimetry

Nucleon-Nucleon scattering at Indiana Cooler¹

When NN scattering program at IUCF was launched in early 90's:

- ► Few NN data with well characterized uncertainties.
- Absence of calibration standards.

- 2001: cooler injector polarized ion source (CIPIOS),
 - rf quadrupole (RFQ),
 - drift-tube linac (DTL),
 - cooler injector synchrotron (CIS), and storage ring.

¹For a review of the physics results achieved with the Cooler, see [1]. Hadron polarimetry & New Spin Physics Tools Frank Rathmann (f.rathmann@fz.juelich.de)

Making it work

Improving the NN data base [2, 3]

Before NN program at the Cooler

 All previously existing data between 175 MeV and 475 MeV from SAID, for references, see [25] of [2]. Curves are SM97 phase shift analysis.

Hadron polarimetry & New Spin Physics Tools

Frank Rathmann (f.rathmann@fz-juelich.de)

Making it work

Improving the NN data base [2, 3]

After NN program at the Cooler

Analyzing power and spin correlation coefficients as fct of energy and angle.

Hadron polarimetry & New Spin Physics Tools

p + p scattering scattering at Indiana Cooler

First thing the group did, was to establish a calibration standard: An absolute measurement of a p + p analyzing power

- ► A_y for p + p elastic scattering at $\theta_{lab} = 8.64^\circ \pm 0.07^\circ$, at beam kinetic energy $183.1 \pm 0.4 \text{ MeV}$ determined to be $A_y = 0.2122 \pm 0.0017$ [4].
- Error includes statistical and systematic uncertainties, and uncertainty in beam energy and angle.
- Measurement represents calibration standard for polarized beams in this energy range.
- Absolute scale obtained by comparison with p + C elastic scattering at same energy at angle where A_y very nearly unity.

Polarization export to arbitrary energy [5]

- Calibration standards are few and exist at selected energies only.
- Of interest to extend their use to arbitrary new energies.

- ► Flattops 1 and 3 at same energy, used to determine P₁ and P₃ from known A_y.
- P₂ ≈ (P₁ + P₃)/2 yields polarization on flatop 2, ⇒ A_y(2).
- Knowledge about P from flattops 1 and 3 "exported" to flattop 2.

Relative uncertainty of normalization of A_y [2]

T [MeV]	197	250	280	294	310	350	400	450
dk/k [%]	0.31	1.08	0.89	1.17	1.01	1.03	0.86	1.0

- ► At 197 MeV uncertainty arises from comparison to reference data [4].
- > At higher energies it includes uncertainty from calibration export.
- ▶ Normalization uncertainty of spin correlation coefficients A_{mn} is $2 \times dk/k$.

Price to pay

► In order to carry out polarization export, considerable fraction (≈ 1/2) of data needs to be collected on lower flattops.

Polarized deuterium jet to calibrate d beam polarization

- RHIC jet target [6] built to provide an absolute calibration of the RHIC proton beam polarization.
- Jet polarization known from Breit-Rabi polarimeter.
 - Device used by HERMES and PAX [7], but here, however, w/o a cell.
- In pp scattering, situation simplified, because beam and target protons are identical.
 - ▶ For same reason, polarimeter does not have to be very sophisticated.

Polarized deuterium gas jet to calibrate beam polarization

Scenario to calibrate deuteron beam polarization:

- 1. Store unpolarized proton beam and bring to interaction with polarized deuterium jet at some cm energy.
 - All deuterium vector and tensor polarizations are known from Breit-Rabi.
 - ► Characterise simultaneously to 1. in suitable detector the reaction

$$ho+ec d o ppn~~$$
 (or some other suitable final state) . (1)

- 2. Reverse kinematics and adjust deuteron momentum to cm energy of 1.
 - Bring polarized deuteron beam of unknown polarization to interaction with protons from unpolarized H jet.
 - Using the data from 3., determine deuteron beam polarization from

$$ec{d}+p
ightarrow ppn~~$$
 (or some other suitable final state) . (2)

• Of course, the established CNI polarimetry *p*C and *pp* scattering may be extended to $\vec{d} + p$, $p + \vec{d}$, and \vec{d} C scattering.

Complementing the spin physics tool box

COoler SYnchrotron COSY

- Cooler and storage ring for (polarized) protons and deuterons.
- Momenta $p = 0.3 3.7 \, \text{GeV/c.}$
- Phase-space cooled internal and extracted beams.

COSY formerly used as spin-physics machine for hadron physics²:

- ▶ Provides ideal starting point for srEDM related R&D.
- ▶ Will be used for first direct measurement of deuteron EDM.

²For a review of the experimental hadron physics program at COSY, see [8]. Hadron polarimetry & New Spin Physics Tools Frank Rathmann (f.rathmann@fz-juelich.de)

Colliding beam source at COSY-Jülich Developed by cooperation of Universities of Erlangen, Bonn and Cologne

Based on charge-exchange reaction [9]:

$$\vec{\mathrm{H}}^0 + \mathrm{Cs}^0
ightarrow \vec{\mathrm{H}}^- + \mathrm{Cs}^+$$
 same for D (3)

Similar sources built previously at Madison, Brookhaven, and Seattle:

- High output, high polarization, reliable long-time running capability [10].
- > 20 ms pulsing of atomic beam, and gas inputs of H_2 (D₂) (also N₂/O₂).
- Synchronous pulsing of Cs beam [11].

Intensity and polarization of CBS at COSY-Jülich³

- Typical COSY fill has a few 1 × 10¹⁰ protons or deuterons stored.
- Space charge limit is about 1 × 10¹¹ particles.

Mode	P_z^{Ideal}	P_{zz}^{Ideal}	$I_0^{\rm Ideal}$	RFT_1	RFT_2	RFT ₃	P_z^{LEP}	$P_z^{\rm LEP}/P_z^{\rm Ideal}$	P_z^{EDDA}	P_{zz}^{EDDA}
0	0	0	1	Off	Off	Off	0.000 ± 0.010	_	0	0
1	-2/3	0	1	Off	Off	On	-0.516 ± 0.010	0.774 ± 0.015	-0.499 ± 0.021	0.057 ± 0.051
2	+1/3	+1	1	Off	On	Off	0.257 ± 0.010	0.771 ± 0.030	0.290 ± 0.023	0.594 ± 0.050
3	-1/3	-1	1	Off	On	On	-0.272 ± 0.010	0.817 ± 0.030	-0.248 ± 0.021	-0.634 ± 0.051
4	+1/2	-1/2	2/3	On	On	Off	0.356 ± 0.013	0.712 ± 0.025	0.381 ± 0.027	-0.282 ± 0.064
5	-1	+1	2/3	On	On	On	-0.683 ± 0.013	0.683 ± 0.013	-0.682 ± 0.027	0.537 ± 0.064
6	+1	+1	2/3	On	Off	Off	0.659 ± 0.013	0.659 ± 0.013	0.764 ± 0.027	0.545 ± 0.061
7	-1/2	-1/2	2/3	On	Off	On	-0.376 ± 0.013	0.752 ± 0.027	-0.349 ± 0.027	-0.404 ± 0.065

³For more details on COSY operation with polarized deuterons, see [10].

Hadron polarimetry & New Spin Physics Tools

Frank Rathmann (f.rathmann@fz-juelich.de)

New tools for spin physics

COSY Landscape for the storage ring EDM program⁴

⁴For a progress report on storage ring EDM experiments (srEDM), see [12, 13].

Hadron polarimetry & New Spin Physics Tools

Frank Rathmann (f.rathmann@fz-juelich.de)

Spin coherence Most polarization experiments don't care about coherence of spins along $\vec{n_s}$

Spins aligned:

Ensemble coherent

Spins out of phase: Ensemble *decoherent*

 \Rightarrow Polarization components along $\vec{n_s}$ not affected

With in-plane spins: $\vec{S} \perp \vec{n_s}$: Ensemble *coherent*

Spins out of phase in horizontal plane

 \Rightarrow In-plane polarization vanishes

Principle of spin-coherence time measurement

Measurement procedure:

- 1. Vertically polarized deuterons stored at $p \simeq 1 \,\text{GeV}\,\text{c}^{-1}$.
- 2. Polarization flipped into horizontal plane with RF solenoid (\approx 200 ms).
- 3. Beam extracted on Carbon target with ramped bump or by heating.
- 4. Horizontal (in-plane) polarization determined from U D asymmetry.

New tools for spin physics

Spin closed orbit, spin tune, and spin coherence

Detector system EDDA [14] (meanwhile replaced by JEPO)

EDDA was used to determine $\vec{p}\vec{p}$ elastic polarization observables:

- ▶ Deuterons at $p = 1 \, {
 m GeV} \, {
 m c}^{-1}$, $\gamma = 1.13$, and $u_s = \gamma \, {
 m G} \simeq -0.161$
- Spin-dependent differential dC cross section (unpolarized target):

$$N_{\rm U,D} \propto 1 \pm \frac{3}{2} p_z A_y \sin(\underbrace{\nu_s \cdot f_{\rm rev}}_{f_s = -120.7 \, \rm kHz} \cdot t), \text{ where } f_{\rm rev} = 750.0 \, \rm kHz.$$
 (4)

Determination of spin tune [15]

Time-stamping events in each detector quadrant accurately:

- 1. Based on turn number n, 100 s measurement interval split into turn intervals of $\Delta n = 10^6$ turns, each interval lasting ≈ 1.3 s.
- 2. For all events, spin phase advance $\varphi_s = 2\pi |\nu_s^{\rm fix}|n$ calculated assuming certain fixed spin tune $\nu_s^{\rm fix}$.
- 3. Either map events into one full polarization oscillation in range $\varphi_s \in [0, 2\pi)$, or perform Fourier analysis of rates in detector \Rightarrow determine $\tilde{\varepsilon}$ and $\tilde{\phi}$ in

$$\varepsilon(\varphi_s) = \tilde{\varepsilon} \sin(\varphi_s + \tilde{\varphi}). \tag{5}$$

Determination of spin tune [15]

Analyze all time intervals:

 Monitor phase of measured asymmetry with assumed fixed spin tune v^{fix}_s in a 100 s cycle:

$$\nu_{s}(n) = \nu_{s}^{\text{fix}} + \frac{1}{2\pi} \frac{d\tilde{\phi}}{dn} \qquad (6)$$
$$= \nu_{s}^{\text{fix}} + \Delta\nu_{s}(n)$$

Experimental technique allows for:

- \blacktriangleright Spin tune ν_s determined to $\approx 10^{-8}$ in 2s time interval.
- ▶ In a 100s cycle at $t \approx 38$ s, interpolated spin tune amounts to $|\nu_{\rm s}| = (16097540628.3 \pm 9.7) \times 10^{-11}$, *i.e.*, $\Delta \nu_{\rm s} / \nu_{\rm s} \approx 10^{-10}$.
- \Rightarrow New precision tool to study systematic effects in a storage ring.

Spin tune as a precision tool for accelerator physics

Applications of new technique:

- Study long term stability of an accelerator.
- Feedback system to stabilize phase of spin precession relative to phase of RF devices (so-called phase-lock).
- Studies of machine imperfections.

Hadron polarimetry & New Spin Physics Tools

Asymmetry un

0.2

0.15

01

0.05

 χ^2 / ndf

Amplitude

Spin coherence time

2012: Observed experimental decay of asymmetry

$$\epsilon_{\rm UD}(t) = \frac{N_D(t) - N_U(t)}{N_D(t) + N_U(t)}.$$
 (7)

93.9 / 90

 $\tau_{SCT} \approx 400 \text{ s}$

 0.2667 ± 0.0016

 -0.002628 ± 0.000149

time[s]

Optimization of spin-coherence time [17]

JEDI progress on τ_{SCT} :

 $au_{\mathsf{SCT}} = (\mathbf{782} \pm \mathbf{117})\,\mathsf{s}$

▶ Previous record: $\tau_{\text{SCT}}(\text{VEPP}) \approx 0.5 \text{ s}$ [16] ($\approx 10^7$ spin revolutions).

In 2015, way beyond expectation:

- ▶ With about 10⁹ stored deuterons.
- ► Spin decoherence considered one main obstacle of srEDM experiments.

Phase locking

Phase locking spin precession in machine to device RF

- 1. resonance frequency, and
- phase between spin precession and device RF (solenoid or Wien filter)

Major achievement : Error of phase-lock $\sigma_{\phi} = 0.21 \text{ rad}$ [18].

(a)

feedback off

Study of machine imperfections I

JEDI developed new method to investigate magnetic imperfections based on highly accurate determination of spin-tune [19].

Spin tune mapping:

- Two cooler solenoids act as spin rotators
 - $\Rightarrow\,$ Generation of artificial imperfection fields.
- Measure spin tune shift vs spin kicks in solenoids.

Hadron polarimetry & New Spin Physics Tools

Frank Rathmann (f.rathmann@fz-juelich.de)

Study of machine imperfections II [19]

- Spin phase φ_{s_i} as fct of *n* for time intervals i = 1, 2, 3.
- Spin tunes ν_{s_i} and spin tune jumps $\Delta \nu_{s_{1,2}}$.

- Position of saddle point determines tilt of stable spin axis by magnetic imperfections.
- Control of background from MDM at level $\Delta c = 2.8 \times 10^{-6}$ rad.
- Systematics-limited sensitivity for deuteron EDM at COSY $\sigma_d \approx 10^{-20} \, {\rm e\, cm}.$

Hadron polarimetry & New Spin Physics Tools

dC polarimetry data base I

Motivation: Optimize polarimetry for future srEDM experiments:

- Determine vector and tensor analyzing powers A_y, A_{yy}, and differential cross sections dσ/dΩ of dC elastic scattering at
 - deuteron kinetic energies T = 170 380 MeV.

Detector system: former WASA forward detector, modified:

- ► Targets: C and CH2
- Full azimuthal coverage, scattering angle range $\theta = 4^{\circ} 17^{\circ}$.

dC polarimetry data base II [20]

Results of elastic dC analyzing powers

- Analysis of differential dC cross sections in progress.
- ▶ Similar data base measurements carried out to provide *pC* data base.

High-precision polarimeter with internal C target [22, 23]

Based on LYSO Scintillation Material

- Saint-Gobain Ceramics & Plastics: Lu_{1.8}Y_{.2}SiO₅:Ce
- Compared to Nal, LYSO provides
 - high density (7.1 vs 3.67 g/cm^3),
 - very fast decay time (45 vs 250 ns).

After runs with external beam:

- System installed at COSY in 2019.
- New developments:
 - Ballistic diamond pellet target for homogeneous beam sampling
 - For details, see [21, Appendix K].

Toward spin manipulation of *individual* beam bunches

- 1. Particles are usually injected into a ring using beam bunches that are prepared and spin-manipulated inside a suitable beam injection system.
- 2. Once the bunches are then stored in the machine, spin manipulations are confined to those ones that affect all bunches simultaneously.
 - see, *e.g.*, the procedure shown on slide 16.
- 3. There are two main obstacles to overcome these limitations:
 - RF spin manipulators, like solenoids, dipoles or Wien filters usually employ resonant circuits.
 - The devices take typically hundreds of ms to power up and down, so that during that time interval, thousands of orbit revolutions take place.
 - Furthermore, even if one could realize a fast spin manipulator, the issue of keeping the RF of the manipulator in phase with the spin precession remains.

Spin manipulator based on waveguide RF Wien filter [24]

RF Wien filter avoids coherent betatron oscillations of beam:

- Joint Jülich Aachen development (IKP IHF RWTH Aachen).
- Waveguide provides $\vec{E} \times \vec{B}$:
 - Minimization of $\vec{F}_{L} = q(\vec{E} + \vec{v} \times \vec{B})$ by careful design of all components.
- Spin-tune feedback system ensures:
 - operation of Wien filter on spin resonance,
 - while RF phase is fixed (phase-lock).

Internal structure

Aim was to build best possible device, with respect to

▶ Electromagnetic performance [24] and mechanical tolerances [25].

Lorentz force compensation [24]

Lorentz force along the RF Wien filter:

- Electric force F_e, magnetic force F_m, and Lorentz force F_L.
- Trapezoid-shaped electrodes determine crossing of F_e and F_m.

Lorentz force

$$\vec{F}_{\rm L} = q \left(\vec{E} + \vec{v} \times \vec{B} \right) \,, \tag{8}$$

- ▶ particle charge q, velocity vector $\vec{v} = c(0, 0, \beta)$, fields $\vec{E} = (E_x, E_y, E_z)$ and $\vec{B} = \mu_0(H_x, H_y, H_z)$, μ_0 vacuum permeability.
- For vanishing Lorentz force $\vec{F}_{L} = 0$, field quotient Z_q given by

$$E_x = -c \cdot \beta \cdot \mu_0 \cdot H_y \quad \Rightarrow \quad \left[Z_q = -\frac{E_x}{H_y} = c \cdot \beta \cdot \mu_0 \approx 173 \ \Omega \right]. \tag{9}$$

View along beam axis into RF Wien filter

Driving circuit [26]

Realization with load resistor and tunable elements (L's and C's):

Design layout using four separate 1 kW power amplifiers.

Circuit fully operational and tested.

- ▶ Tuneable elements⁵ allow [24]:
 - minimization of Lorentz-force, and
 - velocity matching to β of beam.
- With input power of up to $4 \times 2 \text{ kW}$: $\int B_z dz = 0.218 \text{ T mm}$ possible.

Hadron polarimetry & New Spin Physics Tools

⁵built by Fa. Barthel, http://www.barthel-hf.de.

Pilot bunch concept with RF Wien filter

Example for stored beam with 4 bunches:

- revolution frequency $f_{\rm rev} = 750 \, \rm kHz$
- RF WF at K = -1 with $f_{WF} = 871 \text{ kHz}$

- Fields generated in RF WF visible to only three of the four bunches.
 - (or to a single one)
- ▶ Leads to one RF field-free bunch, called "pilot bunch".
- Pilot bunch used only to determine spin tune/precession frequency.
- Feedback maintains phase-lock and $f_{WF} = f_s$ for RF exposed bunches.

Fast switches for RF power input of Wien filter

GaN HEMT-based solution (Gallium Nitride Transistors):

- Short switch on/off times (\approx few ns).
- High power capabilities (\approx few kV).
- On board power damping.

- symmetric switch on/off times (\approx few ns).
- -30 dB power damping.
- promising results.

Test with polarized deuterons at COSY take place in October 2020.

In-plane oscillating deuterons

Parity-even and parity-odd time-reversal violation beyond Standard Model⁶

- Time-reversal breaking and parity-conserving millistrong interactions remain viable mechanisms of CP-violation beyond the Standard Model.
- Possible manifestation: T-odd asymmetry in transmission of tensor-polarized deuterons through a vector-polarized hydrogen gas target.
- ▶ With deuteron polarizations oscillating in ring plane, T-odd asymmetries, oscillate continuously with first or second harmonic of *f*_s.
- Fourier analysis of oscillating T-odd asymmetries allows separation from background,
 - prevailing in experiments employing static vector and tensor polarizations.

Suggestion for EIC:

- ► Take fresh look at oscillating in-plane polarization of relativistic deuterons.
- ► Increase horizontal spin coherence time of ≈ 1400 s, achieved at COSY by more than one order of magnitude to match storage time of 10 h at EIC [27].

Hadron polarimetry & New Spin Physics Tools

⁶For a preprint, see [28].

Summary I

- To provide absolute calibration standards for vector and tensor polarized deuteron beams at EIC, a polarized atomic deuterium jet very useful:
 - Polarized jet needs a Breit-Rabi polarimeter, capable to determine the populations of all deuterium HFS.
 - Detection system needed to identify suitable reaction channels for $\vec{d}p$ and $p\vec{d}$ kinematics.
- Once calibration standards are established, polarization export to other energies becomes viable option.
- JEDI is making steady progress in spin dynamics of relevance to future searches for EDM.
- ▶ Substantial progress producing coherent ensembles of polarized deuteron beams near 1 GeV/c with typical $\tau_{\rm SCT} \approx 1500 \, {\rm s.}$
- Determination of spin tune to better than 1 part in 10¹⁰ provides new precision diagnostic tool for accelerator physics:
 - identify unwanted magnetic fields in machine via spin-tune mapping.
- New spin tools will be applied to perform a first direct measurment of dEDM.

Hadron polarimetry & New Spin Physics Tools

Frank Rathmann (f.rathmann@fz-juelich.de)

Summary II

- Spin manipulation of individual bunches of a stored beam appears feasible in near future:
 - ▶ RF Wien filter well-suited as spin manipulator, not-perturbing the beam orbit.
 - Technique requires long spin-coherence time of stored particle ensemble, and
 - phase-lock of in-plane spin precession to device RF.
- Pilot bunch technique based on fast RF switches at input of RF WF shall be applied to selectively spin manipulate individual or groups of bunches.
- Since parity is largely conserved, longitudinal analyzing powers are tiny, and unpolarized targets very inefficient to determine polarization of beam along its direction of flight.
 - However, as soon as particle spins oscillate in machine plane, sideways oscillating polarization components allow one to readily calibrate the unknown longitudinal polarization components.
- In-plane oscillating deuterons provide novel approach to parity-even and parity-odd time-reversal violation beyond Standard Model.
 - Does this present an opportunity for the EIC that should not be missed?

Summary

JEDI Collaboration

JEDI = Jülich Electric Dipole Moment Investigations

- ~ 140 members (Aachen, Daejeon, Dubna, Ferrara, Indiana, Ithaka, Jülich, Krakow, Michigan, Minsk, Novosibirsk, St Petersburg, Stockholm, Tbilisi, ...
- http://collaborations.fz-juelich.de/ikp/jedi

Spare slides

Spin closed orbit and spin tune

One particle with magnetic moment makes one turn in machine (A - A):

- Stable direction of polarization in ring, if $\vec{S} \parallel \vec{n}_s$.
- Vector $\vec{n_s}$ around which spins precess called spin-closed orbit:
 - ▶ stable spin direction $\vec{n}_s \equiv \vec{n}_s(s)$, is a fct of position along orbit.

Number of spin precessions per turn is called spin tune ν_s .

Spin closed orbit and spin tune

One particle with magnetic moment makes one turn in machine (A - A):

- Stable direction of polarization in ring, if $\vec{S} \parallel \vec{n}_s$.
- Vector $\vec{n_s}$ around which spins precess called spin-closed orbit:
 - ▶ stable spin direction $\vec{n}_s \equiv \vec{n}_s(s)$, is a fct of position along orbit.

Number of spin precessions per turn is called spin tune ν_s .

Electromagnetic field simulations (incl. ferrites) [29]

Full-wave simulations:

- ▶ using CST Microwave Studio⁷.
- Each simulation required up to 12 h of computing time on a 4-T C2075 GPU cluster, with 2 six-core Xeon E5 processors and a RAM capacity of 94 GB.

At input power of 1 kW, magnetic and electric field integrals ($\ell = 1.550 \text{ m}$):

$$\int_{-\ell/2}^{\ell/2} \vec{B} dz = \begin{pmatrix} 2.73 \times 10^{-9} \\ 2.72 \times 10^{-2} \\ 6.96 \times 10^{-7} \end{pmatrix} \operatorname{Tmm}, \quad \int_{-\ell/2}^{\ell/2} \vec{E} dz = \begin{pmatrix} 3324.577 \\ 0.018 \\ 0.006 \end{pmatrix} \operatorname{V} \quad (10)$$

⁷Computer Simulation Technology AG, Darmstadt, Germany, http://www.cst.com Hadron polarimetry & New Spin Physics Tools Frank Rathmann @fz-juelich.de)

Frequencies of RF Wien filter

Spin resonance condition:

$$f_{\mathsf{WF}} = f_{\mathsf{rev}} \left(\gamma \, \mathcal{G} \pm \mathcal{K} \right) \,, \, \mathcal{K} \in \mathbb{Z}. \tag{11}$$

- RF Wien filter operates at frequencies between 0 to 2 MHz,
- > Open symbols not reachable with present setup of driving circuit, *i.e.*,
 - deuterons at K = 0 (-120.8 kHz), and
 - ▶ protons at K = −2 (39.4 kHz).

RF Wien filter installation at COSY

 Upstream Rogowski coil; racks with power amplifiers, each unit delivers up to 500 W; water-cooled 25 Ω resistor.

Hadron polarimetry & New Spin Physics Tools

References I

- [1] H.-O. Meyer, Ann. Rev. Nucl. Part. Sci. 57, 1 (2007).
- [2] B. von Przewoski et al., Phys. Rev. C 58, 1897 (1998).
- [3] F. Rathmann et al., Phys. Rev. C 58, 658 (1998).
- [4] B. von Przewoski et al., Phys. Rev. C 44, 44 (1991).
- [5] R. Pollock et al., Phys. Rev. E 55, 7606 (1997).
- [6] A. Zelenski et al., Nucl. Instrum. Meth. A 536, 248 (2005).
- [7] P. Lenisa, F. Rathmann, L. Barion, S. Barsov, S. Bertelli, V. Carassiti, G. Ciullo, M. Contalbrigo, A. C. Ramusino, S. Dymov, et al., EPJ Techniques and Instrumentation 6, 2 (2019), ISSN 2195-7045, URL https://doi.org/10.1140/epjti/s40485-019-0051-y.
- [8] C. Wilkin, Eur. Phys. J. A 53, 114 (2017), 1611.07250.
- [9] D. Hennies, R. S. Raymond, L. W. Anderson, W. Haeberli, and H. F. Glavish, Phys. Rev. Lett. 40, 1234 (1978), URL https://link.aps.org/doi/10.1103/PhysRevLett.40.1234.
- [10] D. Chiladze et al., Phys. Rev. ST Accel. Beams 9, 050101 (2006), nucl-ex/0511052.

References II

- [11] M. Eggert and H. gen. Schieck, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 453, 514 (2000), ISSN 0168-9002, URL http: //www.sciencedirect.com/science/article/pii/S0168900200004733.
- [12] F. Abusaif et al. (2018), 1812.08535.
- [13] F. Abusaif et al., Storage Ring to Search for Electric Dipole Moments of Charged Particles - Feasibility Study (2019), https://arxiv.org/abs/1912.07881.
- [14] D. Albers et al., Eur. Phys. J. A22, 125 (2004).
- D. Eversmann, V. Hejny, F. Hinder, A. Kacharava, J. Pretz, F. Rathmann, M. Rosenthal, F. Trinkel, S. Andrianov, W. Augustyniak, et al. (JEDI), Phys. Rev. Lett. 115, 094801 (2015), URL http://link.aps.org/doi/10.1103/PhysRevLett.115.094801.
- [16] I. Vasserman, P. Vorobyov, E. Gluskin, P. Ivanov, I. Koop, G. Kezerashvili, A. Lysenko, I. Nesterenko, E. Perevedentsev, A. Mikhailichenko, et al., Physics Letters B **198**, 302 (1987), ISSN 0370-2693, URL http: //www.sciencedirect.com/science/article/pii/0370269387915152.

Hadron polarimetry & New Spin Physics Tools

References III

- [17] G. Guidoboni, E. Stephenson, S. Andrianov, W. Augustyniak,
 Z. Bagdasarian, M. Bai, M. Baylac, W. Bernreuther, S. Bertelli, M. Berz, et al. (JEDI), Phys. Rev. Lett. 117, 054801 (2016), URL http://link.aps.org/doi/10.1103/PhysRevLett.117.054801.
- [18] N. Hempelmann, V. Hejny, J. Pretz, E. Stephenson, W. Augustyniak,
 Z. Bagdasarian, M. Bai, L. Barion, M. Berz, S. Chekmenev, et al. (JEDI),
 Phys. Rev. Lett. **119**, 014801 (2017), URL
 https://link.aps.org/doi/10.1103/PhysRevLett.119.014801.
- [19] A. Saleev, N. N. Nikolaev, F. Rathmann, W. Augustyniak, Z. Bagdasarian, M. Bai, L. Barion, M. Berz, S. Chekmenev, G. Ciullo, et al. (JEDI), Phys. Rev. Accel. Beams 20, 072801 (2017), URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.072801.
- [20] F. Müller et al. (JEDI) (2020), 2003.07566.
- [21] F. Abusaif et al. (2019), 1912.07881.
- [22] I. Keshelashvili, F. Müller, D. Mchedlishvili, and D. Shergelashvili (JEDI), J. Phys. Conf. Ser. 1162, 012029 (2019).

References IV

- [23] D. Shergelashvili, D. Mchedlishvili, F. Müller, and I. Keshelashvili (Jedi), PoS SPIN2018, 145 (2019).
- [24] J. Slim, R. Gebel, D. Heberling, F. Hinder, D. Hölscher, A. Lehrach,
 B. Lorentz, S. Mey, A. Nass, F. Rathmann, et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 828, 116 (2016), ISSN 0168-9002, URL http:

//www.sciencedirect.com/science/article/pii/S0168900216303710.

- [25] J. Slim, F. Rathmann, A. Nass, H. Soltner, R. Gebel, J. Pretz, and D. Heberling, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 859, 52 (2017), ISSN 0168-9002, URL http: //www.sciencedirect.com/science/article/pii/S0168900217303807.
- [26] J. Slim, A. Nass, F. Rathmann, H. Soltner, G. Tagliente, and D. Heberling, JINST 15, P03021 (2020).

References V

- [27] C. Montag et al., in Proceedings, 10th International Particle Accelerator Conference (IPAC2019): Melbourne, Australia, May 19-24, 2019 (2019), p. MOPRB093.
- [28] N. Nikolaev, F. Rathmann, A. Silenko, and Y. Uzikov (2020), 2004.09943.
- [29] J. Slim, R. Gebel, D. Heberling, F. Hinder, D. Hölscher, A. Lehrach,
 B. Lorentz, S. Mey, A. Nass, F. Rathmann, et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 828, 116 (2016), ISSN 0168-9002, URL http:

//www.sciencedirect.com/science/article/pii/S0168900216303710.