Type: Talk

Can absolute polarization of the ³He beams at EIC be precisely measured by HJET?

Monday, 29 June 2020 11:30 (30 minutes)

A possibility to precisely measure absolute vertical polarization of the EIC ³He beams using the polarized hydrogen gas jet target (HJET) is discussed. By concurrent measurement of a_h and a_p , the beam $h^{\uparrow}p$ and jet $p^{\uparrow}h$ spin asymmetries for the detected recoil protons, the He3 beam polarization can be approximated by $P_{\text{beam}} = P_{\text{jet}} \times a_h \kappa_p / a_p \kappa_h$, where $\kappa_p = 1.793$ and $\kappa_h = -1.398$ are derived from the magnetic moments μ_p and μ_h , and $P_{\text{jet}} \approx 0.957$ is the jet polarization determined by a conventional Breit-Rabi polarimeter. The result does not depend on the actual parameters of hp scattering: total cross-section σ_{tot} , forward real-to-imaginary ratio ρ , or Coulomb phase δ_C .

Corrections of a few percent to the value of P_{beam} due to the term $\sim m^2/s$ in the electromagnetic spin-flip amplitude and due to hadronic spin-flip amplitudes r_5^{hp} and r_5^{ph} are well determined. Since the ³He ground state is mostly fully space-symmetric S state, the hp spin-flip amplitudes can be readily related with sufficient accuracy, $r_p^{hp} = r_5^{pp}/3$ and $r_5^{ph} = r_5^{pp}$, to the amplitude measured in elastic pp scattering. Considering the experimental uncertainty in the value of r_5^{pp} as well as the uncertainties in the measurement of a_h/a_p , we can expect $\sigma_P^{\text{syst}} \leq 0.9 \%$ accuracy for the absolute ³He beam polarization at EIC.

Since only the recoil proton is detected in HJET measurements, the acquired data may be contaminated by inelastic (³He break-up) events. However, since only low energy protons in the small solid angle at 90 degree are counted, the inelastic component is strongly suppressed. Analyzing Run 16 data with a deuteron beam, we found that data contamination by the break-up events should not exceed a few percent. In addition, the inelastic corrections are significantly canceled in the a_h/a_p ratio. Thus, the anticipated alteration of the measured P_{beam} due to ³He break-up can be neglected.

Primary author: POBLAGUEV, Andrei (BNL)

Co-authors: BUTTIMORE, Nigel (Trinity College Dublin); ZELENSKI, Anatoli (BNL)

Presenter: POBLAGUEV, Andrei (BNL)