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Compton scattering basics
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* Polarized photon-electron scattering
* Fully QED calculable analyzing power
* Potential to measure redundantly with scattered photon and electron

* Interactions happen with a small fraction of the beam particles leaving it
undisturbed
* Monitoring can be performed in real time during actual data taking

Q\\\‘ Stony Brook University



Compton scattering basics
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Longitudinal vs transverse
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Longitudinal polarization
o 2mr2a [ 1 ‘
Aone = ot = o ran PO+ 1 arXiv:1601:00251v2
0.7 N
oo+ *Calculations based | . Electron Detector W\
.5 0N 532nm laser system
0s- | /
S 02f- | | | Fabry-Perot Cavity
= o1F e | Photon Detector
o _— ]Sw----- o GSO
‘“éxk:’; | ] Dy|
o2 |
_0'30: 0|1 02I - ‘O!SI . I04 - 0.5 . ‘0{6‘ - I0.7I - ‘O.8| . I0!9J — 1

* The energy in the photon detector can measured with calorimetry while the
electron is momentum-analyzed by a dipole after the interaction

* No transverse differences exist for the photon
* Allows for relatively simple analysis of multi-particle crossing
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Transverse polarization
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asymmetry
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* Asymmetry is usually measured with respect
to the vertical axis
* The scattered electron reaches the largest
analyzing power at large scattering angles

* The higher the energy the tighter the
collimator for the scattered photons will be

* This leads to significant constraints on detector
segmentation
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Wavelength dependence for analyzing power

o 5 GeV |
* The maximum analyzing power w2 12 GeV ANERN
increases with lower laser wavelength w18 GeV ”

reaching a peak close to 100nm

* Additionally we can see the position of
peak gets further spread out allowing U0 SR PN IR DU PN OO OO O
for easier detection
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Lasers as a function of wavelength
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* When looking for a laser we need to take into account ease of setup and reliability
* There is a good reason most Compton polarimeters used Nd:YAG lasers at their core
* Alow power Nd:YAG laser can be amplified quite readily to larger powers without much custom
equment
* Additionally we need to make sure we can have enough power from the laser to
provide sufficient luminosity (few Watts of power will be needed)
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Compton polarimeters through history

CERN LEP (T) 46 GeV 5% ~10s Hz pulsed Nd:YAG (532nm): 50 -100 W  Multi-photon
HERA (T) 27 GeV 1.9% CW 10W (514.5nm) Argon Single-photon
HERA (L) 27 GeV 1.6% 100Hz pulsed 10W Nd:YAG (532nm) Single/Multi-photon
HERA (L) 27 GeV 1% CW cavity 3 kW, Single-photon
SLD at SLAC (L) 45.6 GeV 0.5% 17 Hz pulsed ?? W Nd:YAG (532nm) Multi-photon
JLab Hall A (L) 1-6 GeV 1-3% CW cavity 3.7 kW Nd:YAG (532nm) Single/Multi-photon
JLab Hall C (L) 1.1 GeV 0.6% CW cavity 1.7 kW Nd:YAG (532nm) Single/Multi-photon

* Beyond LEP there were quite a few transverse polarimeters around the world that were
used for beam diagnostics (an absolute polarization was not in the plan)

* Longitudinal polarimeters are easier to calibration due to the Compton edge and the O-
crossing, making the data easier to analyze

* Pulsed lasers generally tend to give more interactions per crossing so a multi-photon (or
integrating) method was employed
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M. Woods: (https://www.jlab.org/polarimetry/talks/woods_sld.pdf)

SLD laser setup

* The laser setup for most 2
Compton polarimeters is f s
fairly standard . _ .
. Remote Intensity Control Remot’e wigering,
¢ Beyond reaChlng the N2 Focusing Control
needed luminosity the ;?arizer plate Polarizer
laser needs to be circularly ‘ s ﬁi}
polarized at the IP Laser o
. . . Photodiode 5
* Pockels cells in combination CCD Camera h Photodiodes
with quarter or half wave '
plates allow for an arbitrary (-__U._.__:.-:-__-;_-_-__'_'_':'_;'__'_;'_".'.".--------"""'Céiléite Prism
laser configuration setup (to . L :

Laser et G Polarizer
compensate for any S aitiport Like { —PSCP— %
distortions before the IP) -~

. . . . ‘ Pockels Cells
) POIar:Iza‘l:'lon.and Intensity Intensity Remote Polarization Control
monltormg IS setup to Photodiode

ensure reliable operation
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M. Woods arXiv:hep-ex/9611005v1

SLD laser DOCP

Harmonic Beam Intensity Photodiode Calcite
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DOCP through windows

* Tests done with cavity at JLab showed
that large differences in the degree of
circular polarization can be obtained
when straining the windows

* Typically the polarization is monitored
through measurements of the
transmitted laser light (after the IP)

* The “transfer function” can be
measured on the bench but variations
(such as tightening bolts or pulling
vacuum) change the function making
it unusable for the actual data taking
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arXiv:1509:06642v2

JLab Compton polarimetry

o S PBS A2 A4 VW CMI CM2
* In order to obtain circular polarization in € & DM
the cavity one can use the information \” udl Bl A Ke, (:( i D
obtained from the back-reflected light q t 2 o O
. . . PS €4 €3
* In this case it would be off of mirror M1 V4
* Using the optical reversibility theorem RPD

one can relate the amount of light

—

reaching “PS” to the degree of circular 3 |
polarization inside the cavity o 08
* M. Dalton and D. Jones showed this to be £ 0.6L e
true in a setup at JLab 2 | KRS
. . @ 0.4} ﬁ_.‘
* By performing detailed scans of the half 5 '} :
and quarter wave plates one can %0.2}-----
maximize the circular light at the IPand &+ |t .,
I I I 0 0.5 1 0 0.005 0.01
monitor it throughOUt the data takmg Polarization Signal Polarization Signal

Q\\\‘ Stony Brook University



HERA (T)

WR 1335 Entrance Window

Mirmor M4
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Interaction Point

Exit Window

e 200m transport Laser-Lab to IP
* Chopper used for making background measurement

 Measurement extracted from an up-down energy
asymmetry

* Leading systematic was related to the detector
» Systematics for laser were under control

e Background measurements (and simulation cross
checks) are very important to reach high precision

* Beyond Compton scattering we need to measure beam only
and laser “only” backgrounds
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Laser requirements for the EIC

* At 18 GeV bunches will be replaced every 2 min
e polarimetry measurement needs to happen in a shorter time span

* The amount of electrons per bunch is fairly small ~24 nC
* will need bright laser beam to obtain needed luminosity

 Distance between buckets is ~¥10ns (@5,12 GeV)

* bunch by bunch measurement cannot be done with a CW laser without very
fast detectors

* As we heard from other talks through the workshop a fast polarimeter
will allow for faster machine setup

* In order to allow us to have a flexible system we would like to have the
ability to vary the frequency of the laser system to be able to measure a
single bunch (~78kHz) to interactions with all 1160 bunches at 10 and 5
GeV
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Luminosity calculations
cos (0/2) 1 1

X
o J02i+02,) (02, +025) cos? (0/2) + (02, +02,) sin® (0/2)
S. Verdu-Andres (CAD): https://www.bnl.gov/isd/documents/95396.pdf

L = foN1N2

(1)

* The dependence of the luminosity
of crossing angle needs to take into
account the transverse profile of

w\ the beam and the length of the

pulse

-l

o
w
S

Luminosity [1/cm”2 /s]

* The estimation on the left is made
for a single pulse

N U U PN U N SOV TN T P * For a 10W 100MHz pulsed laser
T with a 12ps pulse can provide about
6*10° 1/(barn*s) of luminosity
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Luminosity calculations

Configuration Beam energy [GeV] Unpol Xsec[barn] A A2 L 11(1%) t[s] t[min]
laser:532nm, photon 18 0.432 0.072 5.18E-03 1.81E+05 2.93E-02 34 0.57
laser:532nm, electron 18 0.432 0.075 5.63E-03 1.81E+05 3.18E-02 31 0.52
laser:1064nm, photon 18 0.333 0.046 2.12E-03 2.35E+05 1.20E-02 84 1.39

laser:1064nm, electron 18 0.333 0.046 2.12E-03 2.35E+05 1.20E-02 84 1.39
* Assuming one scattered particle per bunch would
L - Tunpol allow us to calculate the luminosity needed and a time
Ncompton = estimate for how long it would take to reach a 1%
Joeam statistical precision

* For all configurations envisioned for the EIC (5-18 GeV)

., (APN? . \ ' theluminosity requirements are on the level of few
tﬂlﬁth = | L TCompton Pch« ( Pc ) Amcth 1/(ba rn*S)
G Bandin, et al., Conceptual design report of a compton polarimeter-in cebaf hal o, JLab Internal note. * Comparing this to the estimate for the 10W laser proves that
. such a laser will be sufficient
R e e e e e * The times needed to the needed statistics for the
S S - signal are on the level 30s at 18 GeV
I * Lower energies are less of a concern due to the longer lived
stores
* This would allow for simultaneous measurement of all
- bunches

0 0.5 1 15 2 25 3 35 4 4.5 5
Crossing angle [deg]
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Current design of EIC laser system
—pmy

Gain switched seed

Clean up polarizer G [ —
I Insertable mirror
} QWP HWP
| 4 A=
el Pockels T _
~ cell PBS/analyzer Back-reflected|light
Beam pipe Window

* The initial laser system design uses most of the design features highlighted in the
previous Compton polarimeter implementations

* As was before we need the laser system to be away from potential fatal radiation fields inside
the tunnel (we plan to evaluate the use of high power laser fiber)

* The vacuum resident insertable mirror will be needed in order to be able to
monitor the DOCP at the interaction point
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Gain switched seed

* The gain switched seed laser design
developed at CEBAF for the injector
sgtlsfles all the requirements that we s - :__E_@
discussed so far DM

* The RF lock allows us to synchronize to all or
specific electron bunches L

* The pulse longitudinal width will be smaller L—I\/
than the electron bunch (allowing us to RE ISO

potentially measure the longitudinal @ b SR H
polarization profile) % Bias Network

* The PPLN or LBO crystal will allow us to
%DC Current

Fiber Amp

frequency double the 1064nm light to 532

* The system has proven to be very reliable
and has been adopted by other facilities Phys. Rev. ST Accel. Beams 9, 063501 (2006)
(SUCh as the Malntz MlcrOtron) https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.9.063501
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Current design of EIC |laser system

Removable mirror . .
Steering mirrors,
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window i

| DOCP vs reflected power |
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* The polarization setup for the EIC Compton will
follow the same logical reasoning as the Jefferson

Lab measurements
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Layout at IP12

QF13 QD23

§

electron beam

electron polXsec z=5.00 m

- 0.03

0.02

-0.01

-0.02

-0.03
8 -6 -4 -2 4] 2 4 6 8
x[cm]

QD12

QD23 QF11

~25m IP to detector plane

[
»

- 0.03

A

electron polXsec z=6.50 m

0.02

0.01

0

-0.01

-0.02

-0.03
8 6 4 -2 0 2 4 6 8
x[cm)

electron polXsec z=16.00 m

- 0.03

0.02

-0.03
8 6 4 -2 0 2 4 6 8
x[cm]

- 0.03

electron polXsec z=16.70 m

0.02

0.01

0

-0.01

-0.02

-0.03
8 6 -4 -2 0 2 4 6 8
x[cm]

electron polXsec z=25.00 m

- 0.03

0.2

0.02

0.1

0.1
0.01

0.0

-0.03
2 6 -4 -2 0 2 4 6 8

x[cm]

* As the scattered particles pass through the different magnets the electrons are
stretched horizontally

* At the detector plane we can clearly see both the spatial and energy dependence

q\\\‘ Stony Brook University

Ciprian Gal

21



Envelopes at detector plan
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* 18 GeV will provide the most stringent
requirements for the photon detector
due to the small vertical separation
between the two peaks of the
asymmetry

 The electrons have a extreme almond
shape with a ratio between the
horizontal and vertical extent of about
320

* The momentum analyzed electrons show the
peak analyzing power at about 30% of the
minimum energy as expected

e A preliminary analysis of the vertex
smearing show that the transverse extent
of the electron beam will have an
important effect by almost doubling the
vertical axis
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Detector segmentation

—0.2

0.04

o
(%]

o * By segmenting the simulated 2
signal vertically and £ o AN
assigning an arbitrar g | [ M d b
, norrgn al izgation one cayn use [P, ] Ny '{{lﬂ'ﬁm
' the unbinned distribution to N
- extract the normalization I S
-0.04 02 . . . 5 4 3 -2 <1 0 1 2 3 4 5
okt L L L ] * This rough analysis gives us a Vertical position (mm)
o feel for what the vertical
Input normalization: 73% segmentation of the two Input normalization: 85%
segmentation  Extracted detectors will need to be segmentation Extracted
[um] normalization * For the photon detector a [um] normalization
400 30.53 segmentation of better than 500 77.7
200 75.71 200 micron will be needed 400 80.4
100 73.74 * The electron detector will 333.33 82.7
50 73.43 require a 50 micron or better 200 84.4
10 73.01 segmentation 100 85.1
5 73.00 50 85.0
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Summary and outlook

Long fiber to tunnel

* For the EIC we are trying to incorporate all the
lessons that were learned at previous facilities

* Asingle pass 10 W pulsed laser provides —
enough luminosity to be able to measure Tﬁ
bunch by bunch polarizations on the level of TH
minutes with 1% statistical precision s st

* At 2min lifetime for 18GeV we can still reach the

1% goal if we consider the luminosity weighted
polarization '

e Careful analysis needs to be done for the IR
location

* A longitudinal polarimeter seems to more likely
there

* This would provide a significant cross check on the
IP12 Transverse polarimeter and we can combine
the results (as HERA did)
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Backup
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5vs 18 GeV at e det plane

electron polXsec z=25.00 m

x(cm]
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HERA (T) systematics

Source of Uncertainty

| oP/P (%) | Class ‘ Comment

Description of Photon Generation, IP and Photon Beam Line

HERA Beam Optics 0.5 IIId | 7 different optics
Lepton Beam Line 0.5 IId | Mainly beam position
in quadrupole
Lepton Beam Horizontal Emittance 0.1 1I1d
Laser Beam Line 0.2 I1d
Lepton Laser Beam Crossing 0.1 1IId
Tilt of Photon Beam Ellipse 0.1 IITd | Mostly =~ 2° — 4°
Photon Pileup: Multi Photon Interaction 0.1 I
Calorimeter Response
Average Response 0.6 ITu
- n(y) and E(y) (0.2) Up and Down channels
- Difference converted to non- (0.2)
converted Photons
- Linearity of Calorimeter Response (0.2)
- Effective 7(y) Calibration (0.5) Eff. Silicon strip pitch
- Horizontal and LR-channels 1)
Response
Energy Resolution 0.7 ITu
- Total Energy Resolution (0.4) Fits to Compton edges
- Central spatial Description (0.2)
- Difference converted to (0.1)
non-converted Photons
- Resolution Correlations (0.5) Channels sharing the
same shower
Signal Modelling 0.3 ITu
- Digitisation (0.1)
- Cross Talk and Non-linecarity (0.3)
Horizontal Beam Position 0.2 I1d

Source of Uncertainty 0P/P (%) | Class | Comment

Data Calibration

Absolute Gain 0.3 I Beam energy changing with time

Gain Difference 0.3 I Channels Up vs Down

Vertical Table Centring 0.1 I

Background Subtraction 0.1 I

Fitting Procedure

Method Uncertainty 5 Covering complete phase space

Quality of Maps 0.2 1 MC Statistics, smoothing and
interpolation

Impact of Starting Values 0.2 I

IP Distance Reconstruction 0.5 I Random jumps in data

Pedestal Shift Impact 0.5 IId | Global impact estimated from data

Laser Light Properties

Linear Laser Light Polarisation 0.2 I1d

Trigger Threshold

Bias at low Energies 0.2 ITd

Machine Performance

Emittance Reconstruction 0.9 IId | Comparison with expected

emittances

‘\\\‘ Stony Brook University

Ciprian Gal

27




M. Woods: (https://www.jlab.org/polarimetry/talks/woods_sld.pdf)

SLD

Systematic 1992 1993 1994/95 1996 1997/98

Laser Polarization 2.0% 1.0% 0.2% 0.1% 0.1%
Detector Linearity 1.5% 0.6% 0.5% 0.2% 0.2%
Analyzing Power 1.0% 0.6% 0.3% 0.4% 0.4%
Laser Pickup 0.4% 0.2% 0.2% 0.2% 0.2%
Lum—wting 0.2% 1.1% 0.17% 0.16% 0.15%

Correction

TOTAL 2.7% 1.7% 0.67% 0.52% 0.52%
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Wavelength dependence for longitudinal analyzing power

0.9

0.7

0.6

0.5

maximum A

0.4

RN

—

0.3

0.2

T

L | | 1 1

| L 1 Il
200 400

Q\\\‘ Stony Brook University

L 1
600

1 L1
800

1 | L 1 1
1000 12
A [nm]

1 | | | L L
00 1400 16

L 1 | | | |
00 1800

Ciprian Gal

L
2000

§
<

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

-0.1

|
o
n

o
w

o

5 GeV--
12 GeV.

18 GeV

IHII TTTTGTTTTJTITTIITITI I II0T IIII]

30



JLab Compton polarimetry

‘\\\‘ Stony Brook University

Ciprian Gal

Source Uncertainty | AP/P%
Laser Polarization 0.18% 0.18
helicity correl. beam 5 nm, 3 nrad < 0.07
Plane to Plane secondaries 0.00
magnetic field 0.0011 T 0.13
beam energy 1 MeV 0.08
detector z position 1 mm 0.03
trigger multiplicity 1-3 plane 0.19
trigger clustering 1-8 strips 0.01
detector tilt (x, y and z) 1 degree 0.06
detector efficiency 0.0-1.0 0.1
detector noise up to 20% of rate 0.1
fringe field 100% 0.05
radiative corrections 20% 0.05
DAQ efficiency correction 40% 0.3
DAQ efficiency pt.-to-pt. 0.3
Beam vert. pos. variation 0.5 mrad 0.2
spin precession in chicane 20 mrad < 0.03
Electron Detector Total 0.56
Grand Total 0.59
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Time for 1% measurements

Assume 1 photon/electron per crossing

Configuration
laser:532nm, photon
laser:532nm, electron
laser:1064nm, photon
laser:1064nm, electron

laser:532nm, photon

laser:532nm, electron
laser:1064nm, photon
laser:1064nm, electron

laser:532nm, photon

laser:532nm, electron
laser:1064nm, photon
laser:1064nm, electron

Q\\\\ Stony Brook University

Beam energy [GeV]
18
18
18
18

[ BN G, NG )

12
12
12

Average asymmetry

Unpol Xsec[barn]
0.432
0.432
0.333
0.333

0.569
0.569
0.339
0.339

0.482
0.482
0.327
0.327

A
0.072
0.075
0.046
0.046

0.031
0.029
0.017
0.015

0.057
0.056
0.034
0.033

A2
5.18E-03
5.63E-03
2.12E-03
2.12E-03

9.61E-04
8.41E-04
2.89E-04
2.25E-04

3.25E-03
3.14E-03
1.12E-03
1.10E-03

Ciprian Gal

L
1.81E+05
1.81E+05
2.35E+05
2.35E+05

1.37E+05
1.37E+05
2.31E+05
2.31E+05

1.62E+05
1.62E+05
2.39E+05
2.39E+05

1t(1%)

2.93E-02
3.18E-02
1.20E-02
1.20E-02

5.43E-03
4.75E-03
1.63E-03
1.27E-03

1.84E-02
1.77E-02
6.34E-03
6.23E-03

{[s]
34
31
84
84

184
210
613
787

54
56
158
161

t[min]
0.57
0.52
1.39
1.39

3.07
3.51

10.21
13.11

0.91
0.94
2.63
2.68



