Low Energy Polarimetry at MESA

Video Workshop on **Beam Polarization and Polarimetry at EIC**

by Kurt Aulenbacher

Precision Physics, Fundamental Interactions and Structure of Matter

MESA-Project - introduction

- MESA: Manz Energy-recovering Superconducting Accelerator
- Main interest: low energy electron scattering experiments
- Energies below 200 MeV, CW spin-polarized beam,
- \rightarrow low energy polarimeters

MESA Accelerator Layout

Double sided recirculation design with normalconducting injector and superconducting main MANBO MELBA F linac

Two different modes of operation:

(1300 MHz CW beam)

- EB-operation (P2/BDX experiment): polarized beam, up to 150 µA @ 155 MeV
- ERL-operation (MAGIX experiment): (un)polarized beam, up to 1 (10) mA @ 105 MeV

ERL loop

MAGIX

Recirculation arcs 2-4

Ext. beamline

PRISMA

Recirculation arcs 1-3-5

MEEC-2

5 MeV dump

MEEC-1

155 MeV dump

New experimental halls ...for more and larger experiments

4

MESA Civil construction status May/2020

Main accelerator installation cannot begin before winter 21/22 !

Polarization – accuracy requirements

P2@MESA: High accuracy measurement of (very small) parity violating asymmetry

Figures from: D. Becker et al., Eur. Phys. J. A (2018) 54 : 208

P2@MESA: Assumptions concerning error contributions

Statistics: Assuming 150 μA beam current on 55cm lq. Hydrogen for 10000 hours with P=0.85

Content from: D. Becker et al., Eur. Phys. J. A (2018) 54 : 208

Concept of Polarimeter chain

- Three independend polarimeters forming the chain
- Operating at 0.1; 5; and 155 MeV
- Each having sub-percent accuracy, (aiming at <0.5%)
- One of them operating online

Online requirement!

Observed drift of beam polarization during measurement can reach 1%/day, and may depend on potocathode activation Measurements by "conventional" 3.5 MeV Mott-polarimeter at MAMI

Positions in the chain

Status of the chain

Möller scattering from completely spin polarized hydrogen target: technically demanding, cryostat under construction, detection system under discussion with US-groups. Online capability: see V. Tioukine et al. Proceedings PSTP 2019

Hydro-Möller: A neutral Hydrogen Atomic trap

- Suggested by Chudakov and Luppov E. Chudakov and V. Luppov, Moller polarimetry with atomic hydrogen targets Nuclear Science, IEEE Transactions on 51 (2004) 1533.
- Trapping H-atoms at 0.3 K. Cooling by collisions with suparfluid helium
- Leads to axial trapping by solenoid and radial trapping by wall collisions
- Technology developed at BNL in the 1990ies, but never used in intense beam

Schematic of Hydro-Möller-Target, Dilution refrigerator provides cooling power of ~70mW at 0.3K at Mixing chamber (MC). From: V. Tioukine et al: Proceedings PSTP 2019

Hydro-Möller: Promise

- Areal density about 10^{16} spins/cm² \rightarrow sufficiently low for online operation
- but reasonable statistical efficiency...
- Hydrogen Polarization 1- ε with ε <10⁻⁴ \rightarrow suppression of error from target polarization
- No Levchuk effect
- $\rightarrow \Delta P/P < 0.5\%$?

Figure from: D. Becker et al., Eur. Phys. J. A (2018) 54 : 208

Schematic of Hydro-Möller-Target,

Hydro-Möller: Technical Challenges and status

- Powerful dilation refrigerator needed
 (50mW at 0.3K)
- Components under construction at Mainz and at JINR-Dubna (group of Y. Usov)
- Trap test planned in 2022
- Hydro-Möller occupies its own "hall"
- MESA Beam available in 2023

Figure 4: Refrigerator flow chart. HX=Heat exchanger. HT/IM/LT = high, medium and low temperature level of precooling circuit.

Figure 5: Schematic of the Hydro-Møller atomic trap. 1 - port flange , 2 - cross, 3 - connector flange cryostat, 4 - housing, 5 - high temperature HX, 6 - intermediate temperature HX, 7 - low temperature HX, 8 - final HX, 9 - one-sided film burner, 10 - double-sided film burner, 11 - super conducting solenoid, 12 - connector flange, 13 - tees, 14 - output flange, 15 - He4 - connections, 16 - mixing chamber, 17 - thermally insulated mounting, 18 - still, 19 - evaporator with 25-condenser, 20 - needle valves, 21 - separator, 22 - 77 K shield, 23 - multi layer insulation, 24 - evaporator pumping line

Upper frame: Schematic of Refrigerator Lower frame: cross section of trap with refrigerator

Double Scattering Mott Polarimeter (DSMP)

- The DSMP was perfectioned by the group of Prof. Kessler at University of Münster in the 1990ies: S. Mayer, T. Fischer, W. Blaschke, and J. Kessler, Review of scientic instruments 64, 952 (1993).
- The apparatus was transferred to Mainz
- It allows (in first order approximation) to determine the effective analyzing power S_{eff}
 by experimental observation only (no theory, no Monte-Carlo)
- $\Delta S_{eff}/S_{eff}$ may be lower than 0.3% \rightarrow experimental verification required!
- Contribbutions of higher orders <10⁻³

DSMP: Measurement of analyzing power

Double elastic scattering of an **unpolarized** beam (1) with two identical scattering processes (2,3,4) (targets, solid angles...)

Vertical polarization after first scattering

 $P_{vert} = S_{eff}$

- Observed Left/Right asymmetry in second scattering (6) $A = S_{eff}^2$
- The effective Analyzing power is measured as $S_{eff} = \sqrt{A}$
- With the exception of the assumption that in elastic scattering the anyalyzing power is identical to the polarizing power and the sign of S, no other theory input is needed **(under this ideal assumptions)**
- The second target may be rotated into the (now polarized) beam yielding $P = A(Polbeam)/S_{eff}$ (this measurment only needs seconds)

Double scattering arrangement: concerns

a) "False" asymmetry cannot be elliminated by switching the polarization (since calibration is done by unpolarized beam)
b) Non identical processes and targets , in particular background contributions

In a series of papers Kessler showed that a) can also be (to first order) eliminated by (many) measuring processes only. This requires in particular a careful arrangement of monitor counters (5)
b) was also resolved, both at a level of a few 10⁻³ relative uncertainty contribution

→ Reproducing these results and further systematic checks during PhD work by M. Molitor at MAMI-type source (which could also be used for MESA)

DSMP: Set up

Sketch of beamline and DSMP First "success": DSMP can be operated For weeks without excessively deteriorating the cathode

DSMP and beamline in front of it (beam from the right) 1: Wien filter 2 Viewscreen 3 "Big" flange 4 Faraday cup 5 Camera 6 DSMP counting electronics

Figures from PhD work by M. Molitor

PRISMA

DSMP: Set up

Figures from PhD work by M. Molitor

"Big" flange open
1 beam (from left)
2 pumping port
3 secondary scattering chamber
4 primary Target position
5 beam dump

Note: Secondary chamber is rotated ^periodically to exchange counter positions (removes contribution of detector efficiencies, solid angles to fasle asymmety)

....but **not** deviation of beam position and angle from symmetry axis

Calibration result

From M. Molitor et al. Publication in preparation

FIG. 5. Histogramm of \approx 1600 cycles from the measurement of A, showing the Gaussian distribution with a mean value of 0.0948(1) and $\sigma = 0.00565(3)$

Measuring the double scattering asymmetry requires several days of beamtime for a statistical accuracy of 0.5%. After this calibration of S_{eff} the target can be used in single scattering achieving the same statistical accuracy in less than one minute.

How can we support the statement that the systemaitic uncertainty is low?

Removing the "identity" requirement

In reality the two scattering processes are NOT identical: Case c) in the figure

 $A=S_{\rm T}S_{\rm eff}$

As realized by Hopster (*), a double scattering apparatus allows solving this by achieving additional asymmetry observables with poalrized beam, cases a),b)

$A_0 = P_0 S_{\text{eff}}$	Case a)	
$A_{\rm T} = P_0 S_{\rm T}$	Case b)	
$A_{\uparrow} = \frac{S_{\rm T} + \alpha P_0}{1 + P_0 S_{\rm T}}$	Case b)	
$A_{\downarrow} = \frac{S_{\mathrm{T}} - \alpha P_0}{1 - P_0 S_{\mathrm{T}}}$	Case b)	

This yields five observables with four unknowns

(*) Hopster, H ; Abraham, DL: New method for accurate calibration of an electron-spin polarimeter. In: RSI 59 (1988), Nr. 1, S. 49-51 Mayer, S. ; Fischer, T. ; Blaschke, W. ; Kessler, J.: Calibration of a Mott electron polarimeter: Comparison of dierent methods. In: RSI instruments 64 (1993), Nr. 4, S. 952{957

Consistency checks

The over determination of the variables allows extracting them in different fashion – but the results must be identical

$$S_{\rm eff,(1)}^2 = \frac{A_0 A}{A_{\rm T}}$$
 (14)

$$S_{\text{eff},(2)}^2 = \frac{A_0}{2A_{\text{T}}} \left[A_{\uparrow} \left(1 + A_{\text{T}} \right) + A_{\downarrow} \left(1 - A_{\text{T}} \right) \right]$$
(15)

$$S_{\text{eff},(3)}^2 = \frac{A_0}{4A_{\text{T}}} \frac{[A_{\uparrow}(1+A_{\text{T}})]^2 - [A_{\downarrow}(1-A_{\text{T}})]^2}{A_{\uparrow}(1+A_{\text{T}}) - A}$$
(16)

$$S_{\text{eff},(4)}^2 = \frac{A_0}{4A_{\text{T}}} \frac{[A_{\downarrow}(1-A_{\text{T}})]^2 - [A_{\uparrow}(1+A_{\text{T}})]^2}{A_{\downarrow}(1-A_{\text{T}}) - A}$$
(17)

We first neglected that it is not completely trivial to achieve an unpolarized beam with a GaAs-source.....

Consistency checks

Results obtained with

a residual beam polarization of 0.7%

(2.1% of maximum polarization). After finding this, the result can be corrected.

Consistency checks

After determination of the residual polarization, the extractions using the unpolarized beam can be corrected. Then, the results are consistent within 0.1%.

DSMP:Status error budget

Unsicherheiten die $\Delta P/P$ beeinflussen	$\Delta P/P$
Monitorzählerkorrekturfaktor \boldsymbol{c}	1,04 %
Monitorzähler Asymmetrie Korrektur	$0,\!25\%$
Gestreuter Elektronenstrahl	$0,\!12\%$
Laser-Lichtpolarisation	$\leq 0,\!10\%$
Rückstreuung in sekundärer Streukammer	$<\!0,\!10\%$
Annahme: $S_{\rm pol} = S_{\rm eff}$	$\leq 0,01\%$
Spinrotation im Erdmagnetfeld	$< 0,\!01\%$
180° Detektortauschgenauigkeit	< 0,01 %
Summe der zu berücksichtigen Unsicherheiten	$\leq 1,64\%$

Problem: Cross-check Concerning apparatus asymmetry does not exactly work (yet).

Outlook

DSMP:

- This year we will try to obtain consistent results without correction (*"true uunpolarized beam"*) still in the *"PKA2"* test-lab
- DSMP will transfered to MESA injector in 2021
- Main open issue is the coonsistency of correction for "false" asymmetries
- If that can be resolved, an accuracy <0.5 % is possible

5 MeV single scattering Mott

- Extension of MAMI 3.5 MeV Mott (but a lot of work to do)
- 5 MeV injector expected to be ready winter 20/21
- Hope that theory problems can be resolved, i.e by more experimental work

155 MeV Hydro-Möller

- Kryostat under construction (JINR/Dubna and Mainz)
- Testing trap shall happen in 2021/22
- Beam at MESA available 2023
- \rightarrow Lots of work, cooperation, collaboration or simply help would be greatly appreciated!

Thank you

Source/beam preparation (MELBA) until July 2019

- → Operation with up to 100keV
 beam and up to 10mA
 beam current (>150kV possible, but not required)
- ightarrow 4 PhD theses finished within this subproject
- → MELBA was dis-assembled and put in storage due to start of hall renovation for MESA

Buncher cavity assembly

MELBA-group: V. Bechthold, S. Friederich, P. Heil, C. Matejcek

MAMBO Booster Linac

- Design inspired by the robust MAMI injector LINAC
- Energy gain 4.9MeV, beam power up to 50kW
- 4 room temperature RF structures
- RF-Amplifiers: one with ~75 kW (section 1) and 3 x ~60 kW (sections 2-4)

Pictures and Design of MAMBO: R. Heine

MAMBO Booster: Prototype Cavity

 Prototype needed for testing "multipacting" behavior (Prototype is stable also with longitudinal field, if processed correctly)

Pictures: R. Heine

Pictures and Design of MAMBO: R. Heine

MAMBO Booster: Prototype RF-Amplifier

- 15kW RF-powersource prototype :
- Modular (8*2kW, combined) Solid State Amplifier
- Used for tests of MAMBO RF-section ...and also for Cryomodule tests
- ~25 Amplifiers needed for MESA RF-system
- Redesign/optimization completed

Pictures: R. Heine

Pictures and Design of MAMBO: R. Heine

SRF-System: MEEC-Cryomodules

3.5 meter Specs: 25MeV Energy gain at <40 Watt thermal loss at 2Kelvin

Production of 2 Cryomodules

- 2015: 2 MEEC's ordered at RI Research Instruments GmbH
- Until 2017 SRF testig infrastructure became available at HIM
- 9/2018: First cryomodule does not meet specs at HIM \rightarrow refurbishment by vendor,
- 3/2019: Second tested cryomodule achieves specs during test at HIM/Mainz
- 3/2020 :refurbished cryomodule tested and fulfills specs.

34

BBU investigation

13mA BBU limit at Target in 4pass configuration 2up/2down (without countermeasures)

PhD thesis Christian Stoll, See also: C. Stoll and F. Hug: proceedings IPAC 2019 doi:10.18429/JACoW-IPAC2019-MOPGW025

Note:

Technical limitation: Heating of HOM coupler in TESLA cavities. (~1mA estimation, but needs to be determined experimentally)

