e^- Polarization in EIC electron storage ring

Content:

1/36

- Assessing needed polarization
- Results for the unperturbed optics
- Results for the perturbed optics
- σ_y^* knob

Eliana GIANFELICE (Fermilab) CFNS Workshop on Beam Polarization and Polarimetry at EIC July 1, 2020

Assessing the needed asymptotic polarization P_∞

Sokolov-Ternov effect tends to polarize e^- anti-parallel to the bending field, ie upwards in EIC electron storage ring. The impact on downwards polarized bunches may be significant at high energy.

Polarization builds-up exponentially

2/36

$$P(t) = P_{\infty}(1 - e^{-t/\tau_p}) + P(0)e^{-t/\tau_p}$$

In the presence of depolarizing effects it is

$$rac{1}{ au_p} \simeq rac{1}{ au_{
m BKS}} + rac{1}{ au_{
m d}} \hspace{1cm} ext{and} \hspace{1cm} P_\infty \simeq rac{ au_p}{ au_{
m BKS}} P_{
m BKS}$$

 $P_{\rm BKS}$ and $\tau_{\rm BKS}$ are the Baier-Katkov-Strakhovenko generalization of the Sokolov-Ternov quantities when \hat{n}_0 is not everywhere perpendicular to the velocity. They may be computed "analytically".

Optics

Since starting back in 2017 the storage ring optics is still undergoing some adjustments. This talk optics:

- eRHIC storage ring (esr) optics from December 19 at 18 GeV (Version-5.2)
 - $-~P_{bks}\simeq$ 82.7 %
 - $- au_{bks} \simeq$ 35.5 min
- esr optics from at 10 GeV (Version-5.3)
 - $-~P_{bks}\simeq$ 80.8 %
 - $au_{bks} \simeq$ 704 min

10 GeV esr v-5.3

P(t=0)	P_{∞}	P(t=60')	$< P >_{60'}$	
-85	10	-37.7	-58.7	
-85	20	-54.4	-68.9	
-85	30	-61.4	-72.8	

P(t=0)	P_{∞}	P(t=40')	$< P >_{40'}$
-85	10	-50.0	-66.2
-85	20	-63.5	-73.9
-85	30	-68.7	-76.7

18 GeV esr v-5.2

P(t=0)	P_∞	P(t=5')	$< P >_{5'}$
-85	40	-53.5	-68.5
-85	45	-55.4	-69.5
-85	50	-57.0	-70.5

Computational tools

- MADX for computing the optics and simulate mis-alignments.
- SITF (part of SITROS package) for computing polarization in linear spin motion approximation (as SLIM, but it digests thick lenses).
- SITROS Monte Carlo tracking of particles with "big" photons emitted at user chosen dipoles
- first w/o spins for finding equilibrium, thus with spins parallel to \hat{n}_0 . 2th order orbit description and non-linear spin motion.
 - The diffusion time au_d is evaluated after some thousands turns and P_∞ evaluated from

$$rac{1}{ au_p} \simeq rac{1}{ au_{
m BKS}} + rac{1}{ au_{
m d}} \hspace{1cm} ext{and} \hspace{1cm} P_\infty \simeq rac{ au_p}{ au_{
m BKS}} P_{
m BKS}$$

• Some attempts at using Bmad: it allows for overlapping fields.

Results for the unperturbed machine

10 GeV esr v-5.3 (SITF)

 \Rightarrow The relatively low asymptotic polarization should be not a concern at 10 GeV.

Results for the unperturbed machine: 18 GeV (SITF)

Results for the unperturbed machine: 18 GeV (SITROS)

Tunes: Q_x =49.12, Q_y =43.10, Q_s =0.046 (V_{rf} =62.4 MV)

Beam size at IP

	σ_{x} (mm)	$\sigma_y~(\mu$ m)	σ_ℓ (mm)
Analytic (SITF)	0.110	0.276	8.434
Tracking (SITROS)	0.106	4.4	8.524

- large equilibrium σ_y , confirmed by other tracking codes for the ATS version of the lattice;
- unusual large difference between linearized calculation and tracking; confirmed by Bmad and PTC for ATS optics.

9/36

However, both are feature only of the *unperturbed* optics.

Machine with misalignments

- 546 BPMs (h+v) added close to each quadrupole.
- 2x546 correctors (h+v) added close to each quadrupole.
- Magnet misalignments and orbit correction simulated by MAD-X.
- Optics with errors and corrections dumped into a SITROS readable file.

Assumed quadrupole RMS misalignments

horizontal offset	δx^Q	200 μ m
vertical offset	δy^Q	200 μ m
roll angle	$\delta\psi^Q$	200 μ rad

10/36

Strategy

- switch off sextupoles;
- move tunes to 0.3/0.2;
- introduce errors;
- correct orbit (MICADO/SVD);
- turn on sextupoles;
- tunes back to luminosity values.

MAD-X fails correcting the orbit! Example with only $\delta y^Q \neq 0$ and sexts off. Large discrepancy between what the correction module promises...

CORRECTION SUMMARY:

...and the actual result!

11/36

Orbit is well sampled

Effect on h-plane with sextupoles off

Separate horizontal and vertical correction inadequate in the rotator sections (38 quads) \rightarrow "external" program used for correcting horizontal and vertical orbits (and dispersion if needed) simultaneously.

One particular error realization:

Tunes: .3/.2 Sextupoles: off

12/36

	x_{rms}	y_{rms}	$D_{y,rms}$
	(mm)	(mm)	(m)
errors	4.80	11.6	2.057
SVD (*)	0.25	0.20	0.074

(*) no iterations, wg_{orb} =1, wg_{disp} =0.

Sextupoles on, no betatron coupling or D_y correction:

q_x	q_y	x_{rms}	y_{rms}	$D_{y,rms}$	ϵ_x	ϵ_y
		(mm)	(mm)	(m)	$(\mu$ m)	$(\mu$ m)
.3	.2	0.25	0.20	0.036	0.0288	0.0003
.12	.10	0.35	0.36	0.089	0.02529	0.0073(*)

(*) Goal for matching p-beam size: pprox 0.003 μ m

	x_{rms}	y_{rms}	$D_{y,rms}$	ϵ_x	ϵ_y
	(mm)	(mm)	(m)	$(\mu$ m $)$	$(\mu$ m)
MADX	0.35	0.36	0.089	0.025	0.0073
SITF	0.41	0.38	-	0.024	0.0068

13/36

 \rightarrow Decent agreement between MADX and SITF.

Coupling and dispersion correction with 16 skew quadrupoles.

 \rightarrow Betatron coupling reduced from 0.014 to 0.002.

14/36

	x_{rms}	y_{rms}	$D_{y,rms}$	ϵ_x	ϵ_y
	(mm)	(mm)	(m)	$(\mu$ m)	$(\mu$ m)
MADX	0.33	0.39	0.030	0.0293	0.0008

Ρ

Relative large \hat{n}_0 distortion. Trying to correct it with harmonic bumps, although it can't be the reason for such a bad result.

New algorithm using ring 6-fold symmetry: 12 harmonic bumps for correcting 4 harmonics keeping the other 8 unchanged.

The vertical emittance is increased by the harmonic bumps from 0.8 nm to 2.3 nm.

P

	$q_{oldsymbol{x}}$	q_y	x_{rms}	y_{rms}	$D_{y,rms}$	ϵ_x	ϵ_y
			(mm)	(mm)	(m)	$(\mu$ m)	$(\mu$ m)
1th SVD	.3	.2	0.25	0.20	0.036	0.0288	0.0003
2d SVD	.3	.2	0.09	0.08	0.024	0.0280	0.0002
lumi	.12	.10	0.19	0.15	0.044	0.0245	0.0048
3th SVD	.12	.10	0.05	0.05	0.025	0.0244	0.0053
+MICADO	.12	.10	0.05	0.04	0.024	0.0245	0.0050

Conclusion: a more aggressive closed orbit correction is necessary!

Resulting betatron coupling: 0.015.

The aggressive orbit correction resulted in larger polarization and smaller $\delta \hat{n}_0$. Polarization from SITROS tracking, before betatron coupling correction.

18/36

Polarization is larger then $P_{x,y}$, but still small \rightarrow betatron coupling must be corrected!

P

16 skew quadrupoles used for correcting ΔD_y and betatron coupling from 0.017 to 0.0018.

 P_x and P_y greatly increased.

Non linear polarization calculation.

20/36

	t IP		100	esr optics with Q _x =0.12, Q _y =0.10, Q _s =0.046		
	$\pmb{\sigma_x} \; (mm)$	$\sigma_{y}~(\mu$ m)	σ_ℓ (mm)	[%] u	80 60	
Analytic	0.111	3.285	8.383	olarizatic	40	MMATMINIA
Tracking	0.105	4.409	8.345	ŭ	20 0	
				-		40 40.2 40.4 40.6 40.8 4

a*γ

The already small \hat{n}_0 can be further reduced by harmonic bumps.

21/36

The solid lines refer to the case w/o bumps. P_s increases, but P_x and P_y decrease, likely due to the coupling introduced by the vertical bumps in the sextupoles.

Correcting \hat{n}_0 first. Vertical orbit difference:

The betatron coupling is now 0.0196 (it was 0.017 after orbit correction). Corrected in two iterations down to 0.0001.

Ρ

Emittances: ϵ_x =0.0278 μ m and ϵ_y =30.4 pm. Goal: $\epsilon_y \approx$ 3 nm.

Non linear polarization calculation.

23/36

Polarization over 40%, but σ_y about 100 times too small for matching p-beam vertical size.

Matching e^-/p sizes at IP

For increasing the beam size at the IP we may try

- adding a long vertical bump trough the sextupoles,
- or 2 pairs of skew quads around the IP.

ϵ_y knob

Long bump in arc sextupoles increases ϵ_y through betatron coupling. It seemed working for the ATS optics: \hat{n}_0 almost unperturbed, small orbit excursion.

Beam size at IP						
	σ_x	σ_y	σ_ℓ	ϵ_y		
	$(\mu$ m)	$(\mu$ m $)$	(mm)	(nm)		
SITF	105.0	22.6	6.98	3.1		
SITROS tracking	101.3	26.1 (*)	6.95	-		

(*) Much larger than needed, but polarization large.

SITROS results of large P, despite $P_{x,y} \simeq 0$, were confirmed by Bmad, al-though not in the details.

Those promising results are not confirmed by the esr v5.2 optics, despite a more effective bump.

For $\epsilon_y = 3$ nm (unperturbed machine):

27/36

Ρ

SITROS polarization is larger than P_x and P_y , but still too small.

For the perturbed machine with all corrections and long bump in addition:

The long bump is no more an option.

σ_y^* knob

The e^- beam σ_y^* may be *locally* increased by 2 pairs of skew quadrupoles around the IP. From Willeke and Ripken (DESY 88-114)

$$y_{max} = \sqrt{\epsilon_I eta_{yI} + \epsilon_{II} eta_{yII}}$$

With the option "RIPKEN=true", MADX Twiss computes β_{xI} , β_{xII} , β_{yI} and β_{yII} .

For ϵ_y =3.3 nm, the wished σ_y is $\sigma_y = \sqrt{\beta_y \epsilon_y} = \sqrt{0.09 \times 3.3 \times 10^{-9}} = 17.2 \,\mu\text{m}$ (β_y unperturbed vertical β at IP).

The strength of the "leading" skew quad is changed in MADX until $y_{max} \approx 17~\mu{\rm m}$ is reached.

	$oldsymbol{s}$	ℓ	K
	[m]	[m]	$[m^{-2}]$
SKQA	-4.4	0.010	0.45
SKQB	-1.0	0.010	-1.98
SKQC	1.0	0.010	1.98
SKQD	4.4	0.010	-0.45

Effect of σ_y^* knob from tracking

SITROS tracking of 10000 particles for a distorted ATS optics.

Polarization with 2 pairs of skews for $\sigma_y=21 \ \mu m$ (ATS, perturbed):

Beam size at IP with 2 pairs of skews (ATS						
	σ_x	σ_y	σ_ℓ			
	$[\mu$ m]	$[\mu$ m]	[mm]			
analytical (SITF)	121	17.6	6.97			
SITROS	143	21.1	6.98			

For the esr perturbed machine with "local coupling bump" in addition:

Beam size at IP wit	h errors a	and 2 pa	irs of ske	ews (esr)
	σ_x	σ_y	σ_ℓ	ϵ_y
	$(\mu$ m $)$	$(\mu$ m)	(mm)	(nm)
SITF	111.8	16.2	8.541	0.031
SITROS tracking	106.6	16.0	8.572	-

· · · •

ID

ifm 32/36

Summary

- In presence of (conservative) errors, polarization of \approx 40%-45% seems achievable.
 - The orbit must be very carefully corrected, which leads to a small vertical beam size at the IP (some tens of pm).
- Matching the p vertical beam size:
 - excitation of vertical emittance through uncompensated spurious vertical dispersion or through global betatron coupling lead to very low polarization.
 * It may be still an option if the required σ_u^* is small.
 - 2 pairs of skew quadrupoles for "transferring" some horizontal emittance into the vertical plan at the IP seems the better way.
 In practice could be embedded into the experimental solenoid compensation

scheme.

33/36

THANKS!

