Spin dynamics in electron storage rings: A stochastic differential equations approach

Oleksii Beznosov, James A. Ellison, Klaus Heinemann, UNM, Albuquerque, New Mexico
Desmond P. Barber, DESY, Hamburg and UNM

July 1, 2020

1This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award Numbers DE-SC0018008 and DE-SC0018370
Outline and motivation

Outline
- Spin-orbit dynamics in Lab frame
- Spin-orbit dynamics in beam frame
- Reduced linear orbital dynamics and nonlinear spin
- Derbenev-Kondratenko formula and Bloch equation (BE)
- Effective Bloch equation via averaging

Motivation
We use 3 approaches
- Derbenev-Kondratenko (DK) formula for depolarization time
- Bloch equation for polarization density
- Monte-Carlo spin tracking

We are able to base all 3 approaches on stochastic differential equations of Itô type
Spin-orbit dynamics in Lab frame

SDEs in Lab frame (Cartesian coordinates)

\[
\dot{\tilde{Y}} = \tilde{f}(t, \tilde{Y}) + \tilde{g}(t, \tilde{Y})\xi(t),
\]

\[
\dot{\tilde{S}} = \tilde{\Omega}(t, \tilde{Y})\tilde{S} + \tilde{M}(t, \tilde{Y})\tilde{S} + \tilde{G}(t, \tilde{Y}) + \tilde{H}(t, \tilde{Y})\xi(t),
\]

where $\tilde{Y} \in \mathbb{R}^n$, $\tilde{S} \in \mathbb{R}^3$ and ξ is scalar white noise

QoI: Lab-frame polarization vector

\[
\tilde{P}(t) = \langle \tilde{S}(t) \rangle = \int \int \tilde{s}\tilde{p}_{ys}(t, \tilde{y}, \tilde{s}) \, d\tilde{s} \, d\tilde{y} \equiv \int \tilde{\eta}(t, \tilde{y}) \, d\tilde{y}
\]

where \tilde{p}_{ys} = joint probability density of \tilde{Y} and \tilde{S} and $\tilde{\eta}$ = polarization density

- Bloch equation for polarization density $\tilde{\eta}$ discovered by Derbenev and Kondratenko (DK) (1975)
- The complete form of SDE (2) obtained from DK Bloch equation via reverse engineering (2019)
Spin-orbit dynamics in beam frame

SDEs in beam frame

\[
Y' = f(\theta, Y) + g(\theta, Y)\xi(\theta), \\
S' = \underbrace{\Omega(\theta, Y)}_{\text{BMT}}S + \underbrace{M(\theta, Y)S + G(\theta, Y) + H(\theta, Y)\xi(\theta)}_{\text{ST effect, BK correction, kinetic polarization}},
\]

where \(Y \in \mathbb{R}^n, S \in \mathbb{R}^3 \), where coefficients are 2\(\pi \)-periodic in \(\theta \) and \(\xi \) is vector white noise

QoI: Beam-frame polarization vector

\[
P(\theta) = \langle S(\theta) \rangle = \int \int s_p y_s(\theta, y, s) \, ds \, dy \equiv \int \eta(\theta, y) \, dy
\]

where \(\eta \) is polarization density \(\propto \) spin angular momentum density

- \(P(\theta) \approx \tilde{P}(t_r(\theta)), \ t_r(\theta) \) is time of reference particle at azimuth \(\theta \)
Reduced spin-orbit dynamics in beam frame to study spin diffusion

Reduced SDEs in beam frame

\[Y' = f(\theta, Y) + g(\theta, Y)\xi(\theta), \]
\[S' = \Omega(\theta, Y)S \]

where \(Y \in \mathbb{R}^n, S \in \mathbb{R}^3 \), coefficients are \(2\pi \)-periodic in \(\theta \) and \(\xi \) is vector white noise

- Quantity of interest: Beam-frame polarization vector \(P(\theta) \)
- Reduced SDEs ignore self polarization effect
- Goal: Quantify decay of \(P(\theta) \), i.e., compute depolarization time
- Next: we linearize equation for the orbit (7) and linearize \(\Omega(\theta, Y) \) in \(Y \) in (8).
Linearized model in beam frame

Reduced orbit linearized SDEs

\[Y' = [A(\theta) + \varepsilon_1 \delta A(\theta)] Y + \sqrt{\varepsilon_1} B(\theta) \xi(\theta), \quad (9) \]

\[S' = [\Omega_0(\theta) + \varepsilon_2 \sum_{j=1}^{n} \Omega_j(\theta) Y_j] S \quad (10) \]

where \(Y \in \mathbb{R}^n, S \in \mathbb{R}^3 \), coefficients are \(2\pi \)-periodic in \(\theta \), \(B(\theta) \) is diagonal matrix and \(\xi \) is vector white noise.

Reduced Bloch equation (Fokker Planck equation + T–BMT)

\[\partial_{\theta} \eta = -\sum_{j=1}^{n} \partial_{y_j} \left(([A(\theta) + \varepsilon_1 \delta A(\theta)] y_j \eta) \right) + \frac{\varepsilon_1}{2} \sum_{j=1}^{n} \left(B(\theta) B^T(\theta) \right)_{jj} \partial_{y_j}^2 \eta + \Omega(\theta, y) \eta. \quad (11) \]

- Linearization in \(Y \) is simplest approximation which captures the main spin effects.
- Unlike SLIM here spin is not linearized (synchrotron sidebands are included).
- Reduced linearized SDEs and the Bloch equation* are key for our current research.

* Bloch equation comes from the condensed matter physics.
Gaussian beam density and equilibrium

Orbit SDE in beam frame

We write (9) more generally as

\[Y' = A(\theta)Y + B(\theta)\xi(\theta), \quad Y(0) = Y_0, \]

(12)

with mean and covariance given by

\[m' = A(\theta)m, \quad m(0) = m_0 \]

(13)

\[K' = A(\theta)K + K A^T(\theta) + B(\theta)B^T(\theta), \quad K(0) = K_0 \]

(14)

- The PSM for \(A \) is defined by \(\Psi' = A(\theta)\Psi, \quad \Psi(0) = I_{n\times n} \)
- Radiation damping implies \(\Psi(\theta) \rightarrow 0 \) and thus \(m(\theta) \rightarrow 0 \) as \(\theta \rightarrow \infty \) and

\[K(\theta) = \Psi(\theta) \left(K_0 + \int_0^\theta \psi^{-1}(\theta')B(\theta')B^T(\theta')\psi^{-T}(\theta') \, d\theta' \right) \Psi^T(\theta) \]

There exist unique \(K_0 \) such that \(K_0 = K(2\pi) \) and thus \(K(\theta + 2\pi) = K(\theta) \) therefore we get

\[K(\theta) = \Psi(\theta) \int_{-\infty}^\theta \psi^{-1}(\theta')B(\theta')B^T(\theta')\psi^{-T}(\theta') \, d\theta' \Psi^T(\theta) =: K_{\text{per}}(\theta) \]

It can be shown that \((K(\theta) - K_{\text{per}}(\theta)) \rightarrow 0 \) as \(\theta \rightarrow \infty \)

\[p_Y(\theta, y) \approx p_{eq}(\theta, y) = (2\pi)^{-n/2} \det(K_{eq}(\theta))^{-1/2} \exp\left(-\frac{1}{2}y^T K_{eq}^{-1}(\theta)y\right), \text{ for large } \theta \]
Derbenev–Kondratenko formula for depolarization time

Invariant spin field (ISF)

Let $\hat{n}(\theta, y)$ be the unique periodic solution of (11), with $\varepsilon_1 = 0$

\[
\partial_\theta \hat{n} = -\sum_{j=1}^{n} \partial_y \left([A(\theta)y_j] \hat{n} \right) + \left[\Omega_0(\theta) + \varepsilon_2 \sum_{j=1}^{n} \Omega_j(\theta) Y_j \right] \hat{n} \tag{15}
\]

- Since ε_1 small, in spirit of DK, we look for a solution of BE in the form

\[
\eta(\theta, y) = c(\theta) p_{eq}(\theta, y) \hat{n}(\theta, y) + \Delta \eta(\theta, y) \tag{16}
\]

- Beam frame polarization vector

\[
P(\theta) \approx c(\theta) \int p_{eq}(\theta, y) \hat{n}(\theta, y) dy \tag{17}
\]

- Bloch equation for η gives ODE for c and PDE for $\Delta \eta$ coupled to c

\[
c'(\theta) = -\varepsilon_1 q(\theta) c(\theta), \tag{18}
\]

\[
q(\theta) \equiv \frac{1}{2} \sum_{j=1}^{n} B_{jj}(\theta) \int p_{eq}(\theta, y) \left| \frac{\partial \hat{n}}{\partial y_j}(\theta, y) \right|^2 dy \tag{19}
\]
Unsolved questions

1. How does $\Delta \eta$ affect the depolarization time?
2. When is $\Delta \eta$ negligible?

We have a simple model where question 1 is easy to answer
Toy model

Model SDEs

\[Y' = [A + \varepsilon_1 \delta A]Y + \sqrt{\varepsilon_1}B(\xi_1(\theta), \xi_2(\theta))^T, \quad (20) \]

\[S' = [\Omega_0 + \varepsilon_2 \sum_{j=1}^2 \Omega_j Y_j]S \quad (21) \]

where \(Y \in \mathbb{R}^2 \), \(S \in \mathbb{R}^3 \) and \(B \) is diagonal matrix with \(\xi_1(\theta), \xi_2(\theta) \) statistically independent white noise processes.

\[
A = \begin{pmatrix} 0 & -b \\ b & 0 \end{pmatrix}, \quad \delta A = \begin{pmatrix} -a & 0 \\ 0 & -a \end{pmatrix}, \quad \Omega_0 = \begin{pmatrix} 0 & -\sigma_1 & 0 \\ \sigma_1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\
\Omega_1 = \begin{pmatrix} 0 & 0 & \sigma_2 \\ 0 & 0 & 0 \\ -\sigma_2 & 0 & 0 \end{pmatrix}, \quad \Omega_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\sigma_2 \\ 0 & \sigma_2 & 0 \end{pmatrix}
\]

Goal: Compute depolarization time by integrating the BE and comparing with DK formula from previous slides.
Toy model: Bloch equation

- Goal: Compute depolarization time
- Tool 1:

Bloch equation for polarization density

\[
\partial_\theta \eta = \varepsilon_1 a (\partial_{y_1} (y_1 \eta) + \partial_{y_2} (y_2 \eta)) + b (\partial_{y_1} (y_2 \eta) - \partial_{y_2} (y_1 \eta)) \\
+ \frac{\varepsilon_1}{2} \left(B_{11}^2 \partial_{y_1}^2 + B_{22}^2 \partial_{y_2}^2 \right) \eta + [\Omega_0 + \varepsilon_2 \sum_{j=1}^{2} \Omega_j y_j] \eta
\]

(22)

Numerical method* (for long time simulations)

- Spectral Chebyshev-Fourier discretization in phase space
- Embedded high order additive Runge-Kutta time evolution

Toy model: Derbenev-Kondratenko formula

- Goal: Compute depolarization time
- Tool 2:

Derbenev-Kondratenko formula for depolarization time

- Invariant spin field:

\[
\hat{n}(y) = \sqrt{\frac{1}{(\sigma_1 - b)^2 + \sigma_2^2 (y_1^2 + y_2^2)}} (\sigma_2 y_1, \sigma_2 y_2, \sigma_1 - b)^T \tag{23}
\]

- Write polarization density \(\eta\) as

\[
\eta(\theta, y) = c(\theta) p_{eq}(y) \hat{n}(y) + \Delta \eta(\theta, y) \tag{24}
\]

\[
c'(\theta) = -\varepsilon_1 q c(\theta), \quad q = \frac{1}{2} \sum_{j=1}^{2} B_{jj} \int p_{eq}(y) \left| \frac{\partial \hat{n}}{\partial y_j}(y) \right|^2 dy
\]

\[
p_{eq}(y) = \frac{a}{\pi \Gamma^2} \exp \left(-\frac{a}{\Gamma^2} (y_1^2 + y_2^2) \right), \quad B_{11} = B_{22} = \Gamma
\]
Numerical results

- Via Bloch equation

\[P(\theta) = \int \eta(\theta, y) \, dy \]

- Via DK

\[P(\theta) \approx c(30) e^{-\varepsilon_1 q(\theta-30)} \int p_{eq}(y) \hat{n}(y) \, dy \]

- Damping time is \(1/\varepsilon_1 a = 10\)
Orbital dynamics: Averaging approximation - 1

Goal: Find effective Bloch equation

Reduced linearized orbit & nonlinear spin SDEs

\[
Y' = \left[A(\theta) + \varepsilon_1 \delta A(\theta) \right] Y + \sqrt{\varepsilon_1} B(\theta) \xi(\theta), \tag{25}
\]

\[
S' = \left[\Omega_0(\theta) + \varepsilon_2 \sum_{j=1}^n \Omega_j(\theta) Y_j \right] S \tag{26}
\]

There are two different versions of averaging approximation:

- (i) $\varepsilon_2 = 1$
- (ii) $\varepsilon_1 = \varepsilon_2$

We are here doing (i)

- Fundamental solution matrix Φ of Hamiltonian part of SDEs is defined by:

\[
\Phi'(\theta) = A(\theta) \Phi(\theta) \tag{27}
\]

where $\Phi(\theta)$ is quasiperiodic

- Transform Y to U to get standard form for averaging:

\[
U(\theta) = \Phi^{-1}(\theta) Y(\theta) \tag{28}
\]
Orbital dynamics: Averaging approximation - 2

SDEs in slowly varying form

\[U' = \varepsilon_1 D(\theta)U + \sqrt{\varepsilon_1} \Phi^{-1}(\theta)B(\theta)\xi(\theta), \] (29)

\[S' = [\Omega_0(\theta) + \sum_{j=1}^{n} \Omega_j(\theta)(\Phi(\theta)U)_j]S \] (30)

where \(D(\theta) \) is quasiperiodic

- ODE for \(m_U \) and ODE for \(K_U \):

\[m'_U = \varepsilon_1 D(\theta)m_U \]

\[K'_U = \varepsilon_1 [D(\theta)K_U + K_U D^T(\theta)] + \varepsilon_1 \Phi^{-1}(\theta)B(\theta)B^T(\theta)\Phi^{-T}(\theta) \]
Orbital dynamics: Averaging approximation - 3

Averaged SDEs

Averaging gives us $V \approx U$ with the SDEs

$$V' = \varepsilon_1 \bar{D} V + \sqrt{\varepsilon_1} \bar{B} \xi(\theta), \quad (31)$$

$$S' = [\Omega_0(\theta) + \sum_{j=1}^n \Omega_j(\theta)(\Phi(\theta)V)_j]S \quad (32)$$

- First-moment vector m_V of U and covariance matrix K_V of V satisfy ODEs

$$m'_V = \bar{D} m_V \quad (33)$$

$$K'_V = \varepsilon_1[\bar{D}K_V + K_V \bar{D}^T] + \varepsilon_1 \Phi^{-1} B B^T \Phi^{-T} \quad (34)$$

- Note that the SDEs for V are obtained from the ODEs for m_V, K_V via reverse engineering.
Effective Bloch equation

The Bloch equation for the polarization density η corresponding to averaged SDEs reads as

$$
\partial_\theta \eta_\nu = -\varepsilon_1 \sum_{j=1}^n \partial_{v_j}(\bar{D}v)_j \eta_\nu + \frac{1}{2} \varepsilon_1 \sum_{i,j=1}^n (\Phi^{-1}BB^T\Phi^{-T})_{ij} \partial_{v_i} \partial_{v_j} \eta_\nu
$$

$$
+ [\Omega_0(\theta) + \sum_{j=1}^n \Omega_j(\theta)(\Phi(\theta)v)_j] \eta_\nu
$$

(35)

- To give \bar{D} its simplest form we choose the fundamental solution matrix Φ along the lines of A.W. Chao (see handbook)
- Numerical scheme follows the same approach as for the toy model (Derived in collaboration with Daniel Appelö and Stephen Lau)
Future work

- Use SDEs to guide the Monte-Carlo spin–orbit tracking
- Wrap up the numerical scheme for the Effective Bloch equation for realistic machine
- Full Bloch equation simulations for models and realistic machines (including ST self polarization)
- Investigate white noise assumption

References

- https://math.unm.edu/~ellison/