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Outline and motivation

Outline

• Spin-orbit dynamics in Lab frame

• Spin-orbit dynamics in beam frame

• Reduced linear orbital dynamics and
nonlinear spin

• Derbenev-Kondratenko formula and Bloch
equation (BE)

• Effective Bloch equation via averaging

Motivation

We use 3 approaches

• Derbenev-Kondratenko (DK) formula for
depolarization time

• Bloch equation for polarization density

• Monte-Carlo spin tracking

We are able to base all 3 approaches on
stochastic differential equations of Itô type



Spin-orbit dynamics in Lab frame

SDEs in Lab frame (Cartesian coordinates)

˙̃Y = f̃ (t, Ỹ ) + g̃(t, Ỹ )ξ(t), (1)

˙̃S = Ω̃(t, Ỹ )S̃︸ ︷︷ ︸
BMT

+ M̃(t, Ỹ )S̃ + G̃(t, Ỹ ) + H̃(t, Ỹ )ξ(t)︸ ︷︷ ︸
ST effect, BK correction, kinetic polarization

(2)

where Ỹ ∈ Rn, S̃ ∈ R3 and ξ is scalar white noise

QoI: Lab-frame polarization vector

P̃(t) = 〈S̃(t)〉 =

∫∫
s̃ p̃ys(t, ỹ , s̃) ds̃ dỹ ≡

∫
η̃(t, ỹ) dỹ (3)

where p̃ys= joint probability density of Ỹ and S̃ and η̃ = polarization density

• Bloch equation for polarization density η̃ discovered by Derbenev and Kondratenko (DK)
(1975)

• The complete form of SDE (2) obtained from DK Bloch equation via reverse engineering
(2019)



Spin-orbit dynamics in beam frame

SDEs in beam frame

Y ′ = f (θ,Y ) + g(θ,Y )ξ(θ), (4)

S ′ = Ω(θ,Y )S︸ ︷︷ ︸
BMT

+M(θ,Y )S + G(θ,Y ) + H(θ,Y )ξ(θ)︸ ︷︷ ︸
ST effect, BK correction, kinetic polarization

(5)

where Y ∈ Rn, S ∈ R3, where coefficients are 2π-periodic in θ and ξ is vector white noise

QoI: Beam-frame polarization vector

P(θ) = 〈S(θ)〉 =

∫∫
spys(θ, y , s) ds dy ≡

∫
η(θ, y) dy (6)

where η is polarization density ∝ spin angular momentum density

• P(θ) ≈ P̃(tr (θ)), tr (θ) is time of reference particle at azimuth θ



Reduced spin-orbit dynamics in beam frame to study spin diffusion

Reduced SDEs in beam frame

Y ′ = f (θ,Y ) + g(θ,Y )ξ(θ), (7)

S ′ = Ω(θ,Y )S (8)

where Y ∈ Rn, S ∈ R3, coefficients are 2π-periodic in θ and ξ is vector white noise

• Quantity of interest: Beam-frame polarization vector P(θ)

• Reduced SDEs ignore self polarization effect

• Goal: Quantify decay of P(θ), i.e., compute depolarization time

• Next: we linearize equation for the orbit (7) and linearize Ω(θ,Y ) in Y in (8).



Linearized model in beam frame

Reduced orbit linearized SDEs

Y ′ = [A(θ) + ε1δA(θ)]Y +
√
ε1B(θ)ξ(θ), (9)

S ′ = [Ω0(θ) + ε2

n∑
j=1

Ωj(θ)Yj ]S (10)

where Y ∈ Rn, S ∈ R3, coefficients are 2π-periodic in θ, B(θ) is diagonal matrix and ξ is vector
white noise

Reduced Bloch equation (Fokker Planck equation + T–BMT)

∂θη = −
n∑

j=1

∂yj

(
([A(θ) + ε1δA(θ)]y)j η

)
+
ε1

2

n∑
j=1

(
B(θ)BT(θ)

)
jj
∂2
yj η + Ω(θ, y)η. (11)

• Linearization in Y is simplest approximation which captures the main spin effects

• Unlike SLIM here spin is not linearized (synchrotron sidebands are included)

• Reduced linearized SDEs and the Bloch equation∗ are key for our current research
∗ Bloch equation comes from the condensed matter physics



Gaussian beam density and equilibrium

Orbit SDE in beam frame

We write (9) more generally as

Y ′ = A(θ)Y + B(θ)ξ(θ), Y (0) = Y0, (12)

with mean and covariance given by

m′ = A(θ)m, m(0) = m0 (13)

K ′ = A(θ)K + KAT(θ) + B(θ)BT(θ), K(0) = K0 (14)

• The PSM for A is defined by Ψ′ = A(θ)Ψ, Ψ(0) = In×n

• Radiation damping implies Ψ(θ)→ 0 and thus m(θ)→ 0 as θ →∞ and

K(θ) = Ψ(θ)

(
K0 +

∫ θ

0
Ψ−1(θ′)B(θ′)BT(θ′)Ψ−T(θ′) dθ′

)
ΨT(θ)

There exist unique K0 such that K0 = K(2π) and thus K(θ + 2π) = K(θ) therefore we get

K(θ) = Ψ(θ)

∫ θ

−∞
Ψ−1(θ′)B(θ′)BT(θ′)Ψ−T(θ′) dθ′ ΨT(θ) =: Kper(θ)

It can be shown that (K(θ)− Kper(θ))→ 0 as θ →∞

pY (θ, y) ≈ peq(θ, y) = (2π)−n/2 det(Keq(θ))−1/2 exp(−
1

2
yTK−1

eq (θ)y), for large θ



Derbenev–Kondratenko formula for depolarization time

Invariant spin field (ISF)

Let n̂(θ, y) be the unique periodic solution of (11), with ε1 = 0

∂θn̂ = −
n∑

j=1

∂yj ([A(θ)y ]j n̂) +

[
Ω0(θ) + ε2

n∑
j=1

Ωj(θ)Yj

]
n̂ (15)

• Since ε1 small, in spirit of DK, we look for a solution of BE in the form

η(θ, y) = c(θ)peq(θ, y)n̂(θ, y) + ∆η(θ, y) (16)

• Beam frame polarization vector

P(θ) ≈ c(θ)

∫
peq(θ, y)n̂(θ, y)dy (17)

• Bloch equation for η gives ODE for c and PDE for ∆η coupled to c

c ′(θ) = −ε1q(θ)c(θ), (18)

q(θ) ≡ 1

2

n∑
j=1

Bjj(θ)

∫
peq(θ, y)

∣∣∣∣ ∂n̂∂yj (θ, y)

∣∣∣∣2dy (19)



Unsolved questions

1 How does ∆η affect the depolarization time?

2 When is ∆η negligible?

We have a simple model where question 1 is easy to answer



Toy model

Model SDEs

Y ′ = [A + ε1δA]Y +
√
ε1B(ξ1(θ), ξ2(θ))T , (20)

S ′ = [Ω0 + ε2

2∑
j=1

ΩjYj ]S (21)

where Y ∈ R2, S ∈ R3 and B is diagonal matrix with ξ1(θ), ξ2(θ) statistically independent white
noise processes

A =

(
0 −b
b 0

)
, δA =

(
−a 0
0 −a

)
, Ω0 =

 0 −σ1 0
σ1 0 0
0 0 0


Ω1 =

 0 0 σ2

0 0 0
−σ2 0 0

 , Ω2 =

 0 0 0
0 0 −σ2

0 σ2 0


Goal: Compute depolarization time by integrating the BE and comparing with DK formula from
previous slides



Toy model: Bloch equation

• Goal: Compute depolarization time

• Tool 1:

Bloch equation for polarization density

∂θη = ε1a (∂y1 (y1η) + ∂y2 (y2η)) + b (∂y1 (y2η)− ∂y2 (y1η))

+
ε1

2

(
B2

11∂
2
y1

+ B2
22∂

2
y2

)
η + [Ω0 + ε2

2∑
j=1

Ωjyj ]η (22)

Numerical method∗ (for long time simulations)

• Spectral Chebyshev-Fourier discretization in phase spase

• Embedded high order additive Runge-Kutta time evolution
∗ O. Beznosov, K. Heinemann, J.A. Ellison, D. Appelö, D.P. Barber, Spin Dynamics in Modern Electron
Storage Rings: Computational Aspects, Proceedings of ICAP18, Key West, October 2018.



Toy model: Derbenev-Kondratenko formula

• Goal: Compute depolarization time

• Tool 2:

Derbenev-Kondratenko formula for depolarization time

• Invariant spin field:

n̂(y) =

√
1

(σ1 − b)2 + σ2
2(y 2

1 + y 2
2 )

(σ2y1, σ2y2, σ1 − b)T (23)

• Write polarization density η as

η(θ, y) = c(θ)peq(y)n̂(y) + ∆η(θ, y) (24)

c ′(θ) = −ε1q c(θ), q =
1

2

2∑
j=1

Bjj

∫
peq(y)

∣∣∣∣ ∂n̂∂yj (y)

∣∣∣∣2dy
peq(y) =

a

πΓ2
exp

(
− a

Γ2
(y 2

1 + y 2
2 )
)
,B11 = B22 = Γ



Numerical results
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• Via Bloch equation

P(θ) =

∫
η(θ, y) dy

• Via DK

P(θ) ≈ c(30)e−ε1q(θ−30)

∫
peq(y)n̂(y) dy

• Damping time is 1/ε1a = 10



Orbital dynamics: Averaging approximation - 1

Goal: Find effective Bloch equation

Reduced linearized orbit & nonlinear spin SDEs

Y ′ = [A(θ) + ε1δA(θ)]Y +
√
ε1B(θ)ξ(θ), (25)

S ′ = [Ω0(θ) + ε2

n∑
j=1

Ωj(θ)Yj ]S (26)

There are two different versions of averaging approximation:

• (i) ε2 = 1 (ii) ε1 = ε2

We are here doing (i)

• Fundamental solution matrix Φ of Hamiltonian part of SDEs is defined by:

Φ′(θ) = A(θ)Φ(θ) (27)

where Φ(θ) is quasiperiodic

• Transform Y to U to get standard form for averaging:

U(θ) = Φ−1(θ)Y (θ) (28)



Orbital dynamics: Averaging approximation - 2

SDEs in slowly varying form

U ′ = ε1D(θ)U +
√
ε1Φ−1(θ)B(θ)ξ(θ), (29)

S ′ = [Ω0(θ) +
n∑

j=1

Ωj(θ)(Φ(θ)U)j ]S (30)

where D(θ) is quasiperiodic

• ODE for mU and ODE for KU :

m′U = ε1D(θ)mU

K ′U = ε1[D(θ)KU + KUD
T (θ)] + ε1Φ−1(θ)B(θ)BT (θ)Φ−T (θ)



Orbital dynamics: Averaging approximation - 3

Averaged SDEs

Averaging gives us V ≈ U with the SDEs

V ′ = ε1D̄V +
√
ε1B̄ξ(θ), (31)

S ′ = [Ω0(θ) +
n∑

j=1

Ωj(θ)(Φ(θ)V )j ]S (32)

• First-moment vector mV of U and covariance matrix KV of V satisfy ODEs

m′V = D̄mV (33)

K ′V = ε1[D̄KV + KV D̄
T ] + ε1Φ−1BBTΦ−T (34)

• Note that the SDEs for V are obtained from the ODEs for mV ,KV via reverse engineering



Orbital dynamics: Averaging approximation - 4

Effective Bloch equation

The Bloch equation for the polarization density η corresponding to averaged SDEs reads as

∂θηv = −ε1

n∑
j=1

∂vj (D̄v)jηv +
1

2
ε1

n∑
i,j=1

(Φ−1BBTΦ−T )ij∂vi ∂vj ηv (35)

+ [Ω0(θ) +
n∑

j=1

Ωj(θ)(Φ(θ)v)j ]ηv

• To give D̄ its simplest form we choose the fundamental solution matrix Φ along the lines
of A.W. Chao (see handbook)

• Numerical scheme follows the same approach as for the toy model (Derived in
collaboration with Daniel Appelö and Stephen Lau)



Future work

• Use SDEs to guide the Monte-Carlo spin–orbit tracking

• Wrap up the numerical scheme for the Effective Bloch equation for realistic machine

• Full Bloch equation simulations for models and realistic machines (including ST self
polarization)

• Investigate white noise assumption
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