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Outline and motivation

Outline
e Spin-orbit dynamics in Lab frame
e Spin-orbit dynamics in beam frame

e Reduced linear orbital dynamics and
nonlinear spin

e Derbenev-Kondratenko formula and Bloch
equation (BE)

o Effective Bloch equation via averaging

Motivation
We use 3 approaches

e Derbenev-Kondratenko (DK) formula for
depolarization time

e Bloch equation for polarization density
e Monte-Carlo spin tracking

We are able to base all 3 approaches on
stochastic differential equations of 1td type




Spin-orbit dynamics in Lab frame

SDEs in Lab frame (Cartesian coordinates)

Y =1(t, V) + &(t, V)e(0), O]
5= (¢, V)5 + M(t, V)S + G(t, V) + A(t, V)e(r) @)
————
BMT ST effect, BK correction, kinetic polarization

where Y € R S e R? and & is scalar white noise

Qol: Lab-frame polarization vector

B(t) = (3(t)) = / / 5Pys(t,5,5) d5 d = / i(t,7) dy 3)

where pys= joint probability density of Y and § and #j = polarization density

e Bloch equation for polarization density 7j discovered by Derbenev and Kondratenko (DK)
(1975)

e The complete form of SDE (2) obtained from DK Bloch equation via reverse engineering
(2019)



Spin-orbit dynamics in beam frame

SDEs in beam frame

Y =£(0,Y)+g(0, Y)©), (4)
S '=Q(0,Y)S+M(,Y)S+ G(9,Y)+ H(O, Y)E0) (5)
——
BMT ST effect, BK correction, kinetic polarization
where Y € R", S € R3, where coefficients are 27-periodic in 6 and & is vector white noise
Qol: Beam-frame polarization vector
(6)

P(0) = (S(0)) = / / 5pys(6.y,s) ds dy = / 7(6,y) dy

where 7 is polarization density o< spin angular momentum density

o P(0) =~ P(t.(0)), t.(0) is time of reference particle at azimuth 6



Reduced spin-orbit dynamics in beam frame to study spin diffusion

Reduced SDEs in beam frame

Y' =f(0,Y)+g(0, Y)E0),
$'=Q(,Y)S

where Y € R", S € R3, coefficients are 2m-periodic in 6 and £ is vector white noise

(7)
(8)

Quantity of interest: Beam-frame polarization vector P(6)

Reduced SDEs ignore self polarization effect
e Goal: Quantify decay of P(f), i.e., compute depolarization time

o Next: we linearize equation for the orbit (7) and linearize (¢, Y) in Y in (8).



Linearized model in beam frame

Reduced orbit linearized SDEs

Y' = [A(6) + 16A@)]Y + VEB(O)(6),

S" = [Q0(0) + & Z Q;(0)Yj1S

Jj=1

(9)

(10)

where Y € R", S € R?, coefficients are 27-periodic in 6, B(0) is diagonal matrix and & is vector

white noise

4

Reduced Bloch equation (Fokker Planck equation + T-BMT)

n
€1

am == 3 0y, ((1A0) +213A0)ly);m) + 5 3 (BO)B™(0)) dn+00.y)n.

j=t iz

e Linearization in Y is simplest approximation which captures the main spin effects
e Unlike SLIM here spin is not linearized (synchrotron sidebands are included)
e Reduced linearized SDEs and the Bloch equation™ are key for our current research

* Bloch equation comes from the condensed matter physics

(11)



Gaussian beam density and equilibrium

Orbit SDE in beam frame

We write (9) more generally as

Y = A@O)Y +B(0)5(6), Y(0) = Yo, (12)

with mean and covariance given by
m' = A(0)m, m(0) = mo (13)
= A(O)K + KA"(0) + B(6)B" (9), K(0) = K (14)

e The PSM for A is defined by W' = A(0)W, W(0) = Ihxn
e Radiation damping implies W(6) — 0 and thus m(6) — 0 as § — oo and

K(0) = w(0) <K0 + /6 w10 B(e")BT (0w (9" d@’) wT(6)
There exist unique Kp such that Ko = k0(27r) and thus K(0 4 27) = K(0) therefore we get
K(8) = w(0) /9 vL0NBOHNBT(0YWT(0') do’ WT(0) =: Kper(0)
It can be shown that (K(0) 7( !;::r(@)) —0asf —

Py (0,y) ~ peq(8,y) = (2m) "/ det(Keq(6)) 1/ exp(ffy Keq (0)y), for large 6




Derbenev—Kondratenko formula for depolarization time

Invariant spin field (ISF)
Let A(6, y) be the unique periodic solution of (11), with e; =0

90(0)+52iﬂj(9)yj A (15)

Jj=1

do = — > 0, (AO]A) +

Jj=1

e Since 1 small, in spirit of DK, we look for a solution of BE in the form

n(0,y) = c(0)pea(0, y)A(0,y) + An(0, y) (16)
e Beam frame polarization vector
P(6) % c(6) [ pra(6.)i(6., )y (an)
e Bloch equation for 1 gives ODE for ¢ and PDE for An coupled to ¢
c'(0) = —e1q(0)c(0), (18)

2dy (19)

a0)= 3 3" 8(0) [ a0 510.9)



Unsolved questions
1 How does An affect the depolarization time?
2 When is An negligible?

We have a simple model where question 1 is easy to answer



Toy model

Model SDEs
(20)

— [A+21AlY + VEBE(0),6(0),

2
=[Q+e) QYIS

Jj=1

(21)

4

where Y € R?, S € R® and B is diagonal matrix with & (8), £2(6) statistically independent white

noise processes
0 0 —o1 O
A= ( B ) ( ) Qo = g1 0 0
b 0 0 0 0 0

0 0 o2 0 0 0
Q= 0 0 O , =10 0 -0
0 0 o 0

0
Goal: Compute depolarization time by integrating the BE and comparing with DK formula from

previous slides



Toy model: Bloch equation

e Goal: Compute depolarization time
e Tool 1:

Bloch equation for polarization density

don = €1a(8y, (y1n) + By, (yan)) + b (8y, (y2n) — 9y, (11))

2
€
i (3121851 + 8222652) N+ +e > Qyln (22)

j=1

Numerical method™ (for long time simulations)
e Spectral Chebyshev-Fourier discretization in phase spase

e Embedded high order additive Runge-Kutta time evolution

* 0. Beznosov, K. Heinemann, J.A. Ellison, D. Appeld, D.P. Barber, Spin Dynamics in Modern Electron
Storage Rings: Computational Aspects, Proceedings of ICAP18, Key West, October 2018.



Toy model: Derbenev-Kondratenko formula

e Goal: Compute depolarization time
e Tool 2:

Derbenev-Kondratenko formula for depolarization time

e Invariant spin field:

1 T
= - 2
A(y) \/(01 —b)? + 2(y? +y§)(02}’1,crz,\/2701 b) (23)
e Write polarization density 7 as
n(0,y) = c(0)peq(y)Aly) + An(0, y) (24)

2
dy

¢(0) = 19 c(0), 228 [ patr)| 52 0)

Pea(y) = —= exp ( =08+ }’22)) ,Buu=Bn=T




Polarization

Numerical results

e Via Bloch equation

via Bloch cquation
via DK formula -« -

P(9) = / 0(0.y) dy

| e Via DK

P(0) ~ c(30)e~ =10~ / Pealy)y) dy

015 AN e Damping time is 1/e1a = 10
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Orbital dynamics: Averaging approximation - 1
Goal: Find effective Bloch equation

Reduced linearized orbit & nonlinear spin SDEs

Y/ = [A9) +<0A@)]Y + VEBOKO) (25)
S =[Q0(0) + &2 z": Q;(0)Y;]S (26)

There are two different versions of averaging approximation:
e (Yeo=1(ii)e1=e2
We are here doing (i)

e Fundamental solution matrix ® of Hamiltonian part of SDEs is defined by:
o' (0) = A(9)d(0) (27)

where ®(0) is quasiperiodic
e Transform Y to U to get standard form for averaging:

u®) = 10)Y () (28)



Orbital dynamics: Averaging approximation - 2

SDEs in slowly varying form

U' =e1D(0)U + v, 01 (0) B(0)E(6), (29)
S = [Q0(6) + Z Q(0)(®(0)U),1S (30)

where D(0) is quasiperiodic

e ODE for my and ODE for Ky:
m'U =e1D(0)my

K| = e1[D(0)Ku + KuD'(8)] + 101 (8)B(9)BT ()~ T (0)



Orbital dynamics: Averaging approximation - 3

Averaged SDEs
Averaging gives us V = U with the SDEs

V' = 1DV + /e, BE(H), (31)
S’ = [Q(0) + Z Q;(0)(®(0)V),]S (32)

e First-moment vector my of U and covariance matrix Ky of V satisfy ODEs
m(/ = Dm\/ (33)
K\, = ei[DKy + KyD"] + 19— 1BBT®-T (34)

e Note that the SDEs for V are obtained from the ODEs for my, Ky via reverse engineering



Orbital dynamics: Averaging approximation - 4

Effective Bloch equation

The Bloch equation for the polarization density 7 corresponding to averaged SDEs reads as

n _ 1 n
Oomy = —€1 Z 9y, (Dv)jny + €1 z (¢-1BBT®-T);0,,0,my (35)

Jj=1 ij=1

+[20(6) + D (O)(S(O)v)In.

=1

e To give D its simplest form we choose the fundamental solution matrix ® along the lines
of A.W. Chao (see handbook)

e Numerical scheme follows the same approach as for the toy model (Derived in
collaboration with Daniel Appel6 and Stephen Lau)



Future work

e Use SDEs to guide the Monte-Carlo spin—orbit tracking

e Wrap up the numerical scheme for the Effective Bloch equation for realistic machine

e Full Bloch equation simulations for models and realistic machines (including ST self
polarization)

e Investigate white noise assumption
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