# Compton electron detector for polarimetry

February 10<sup>th</sup> 2020 Alexandre Camsonne Hall A Jefferson Laboratory





### Outline

- eRHIC
- Compton polarimetry
- Compton electron detector JLEIC
- Counting rates
- Diamond and fast amplifier for electron detector
- Photon detection
- To do list
- Conclusion





2

#### **Electron Ion Collider designs**



#### **Lower luminosity**

560 MHz RF 330 bunches 33 ns between bunches Electron current up to 1.2A Ion current up to 0.46 A

#### High luminosity

560 MHz RF 1320 bunches 10 ns between bunches Electron current up to 2.4 A Ion current up to 0.92 A

High luminosity polarized electrons on polarized and unpolarized ions For electron beam asymmetry measurements polarization can be the dominating error. Aiming for 1% or better electron polarization accuracy





#### Main Parameters eRHIC ring-ring for Maximum Luminosity

#### $E_p = 275 \text{ GeV}, E_e = 10 \text{ GeV}$

|                           |                                                   | No Hadron Cooling |                   | Strong Hadron Cooling |           |
|---------------------------|---------------------------------------------------|-------------------|-------------------|-----------------------|-----------|
| Parameter                 | Units                                             | Protons           | Electrons         | Protons               | Electrons |
| Center of Mass Energy     | GeV                                               | 100               |                   | 100                   |           |
| Beam Energy               | GeV                                               | 275               | 10                | 275                   | 10        |
| Particles/bunch           | 10 <sup>10</sup>                                  | 11.6              | 31                | 5.6                   | 15.1      |
| Beam Current              | mA                                                | 456               | 1253              | 920                   | 2480      |
| Number of Bunches         |                                                   | 330               |                   | 1320                  |           |
| Hor. Emittance            | nm                                                | 17.6              | 24.4              | 8.3                   | 24.4      |
| Vertical Emittance        | nm                                                | <mark>6.76</mark> | 3. <mark>5</mark> | 3.1                   | 1.7       |
| β <sub>x*</sub>           | cm                                                | 94                | 62                | 47                    | 16        |
| β <sub>γ</sub> *          | cm                                                | 4.2               | 7.3               | 2.1                   | 3.7       |
| σ <sub>x</sub> '*         | mrad                                              | 0.137             | 0.2               | 0.13                  | 0.39      |
| $\sigma_{y}$ '*           | mrad                                              | 0.401             | 0.22              | 0.38                  | 0.21      |
| Beam-Beam ξ <sub>x</sub>  |                                                   | 0.014             | 0.084             | 0.012                 | 0.047     |
| Beam-Beam ξ <sub>γ</sub>  |                                                   | 0.0048            | 0.075             | 0.0043                | 0.084     |
| τ <sub>IBS</sub> long/hor | hours                                             | 10/8              | -                 | 4.4/2.0               | -         |
| Synchr. Rad Power         | MW                                                | -                 | 6.5               | -                     | 10        |
| Bunch Length              | cm                                                | 7                 | 0.3               | 3.5                   | 0.3       |
| Luminosity                | 10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> | 0.29              |                   | 1.21                  |           |

New eRHIC ring ring design : beam interaction frequency going from initial RHIC 10 MHz to 30 MHz with 330 bunches and 100 MHz with 1320 bunches in a 3.8 km ring





#### **Polarized Compton effect**



 $k_{\gamma'}$  (MeV)





#### **Polarized Compton process**



Longitudinal polarization asymmetry



Transverse polarization Compton asymmetry





#### **Polarized Compton process**



Precision Electron-Beam Polarimetry using Compton Scattering at 1 GeV (Hall C at Jefferson Lab)





#### Compton chicane

The electrons that interact lose part of their momentum, therefore they are deflected more by dipolar magnets.







### JLab Hall C Compton Electron detector

A solid state detector directly in the primary vacuum can approach the beam using a movable support.

Silicon or diamond strip detectors About 200 to 250 strips 250 mm width 5 cm length to catch zero crossing and Compton edge Present system used at JLAB Hall C : electronics connected with flat cables Bad for SNR and speed!













### Challenges at EIC

- Large beam current (2.4 A vs 200 uA at JLab)
  - Wakefield power deposit by beam can be significant
  - Synchrotron radiation (more severe than JLab)
  - Background
    - Bremstrahlung
    - Halo
  - Detector radiation hardness





## Proposed EIC Compton electron detector

- Use Roman Pot for electron side too
- Pros :
  - Access to detector without breaking main vacuum
  - Electronics can be closer to electronics ( no flex cables )
  - Cooling of detector easier
- Con :
  - Additional material in front of detector



TOTEM Roman Pot







### Synchrotron radiation



Jefferson Lab



#### Ante-chamber method







13

### Halo background

**Detector Rate** 







#### Compton Electron Rates from IP



- Use Pythia event generator
- Transport to Compton Detector
- Preliminary rate is negligible compared to other backgrounds





#### **Compton Electron Det. Rates**



#### Joshua Hoskins

- 10 W
- 1 A of beam
- Green laser
- Compton and Bremstrahlung assuming 10<sup>-9</sup> Torr
- Corresponding radiation dose for signal and background
   (typical silicon SNR divided by 2 after 1 Mrad No change for diamond after 2 Mrad from Qweak )





### Compton asymmetry with window



Higher statistics MC comparison





#### Compton asymmetry with window

|           | Polarization     | Compton Edge      | $\chi^2/\mathrm{NDF}$ |
|-----------|------------------|-------------------|-----------------------|
| No Window | $84.90 \pm 0.39$ | $118.24 \pm 0.18$ | 1.74                  |
| Window    | $84.40 \pm 0.40$ | $118.36 \pm 0.28$ | 2.48                  |

- Extracted polarization with and without window
- Number consistent at 1% level
- Need to study systematics with high statistics to evaluate best accuracy possible





#### Wakefield study







#### **Compton counting rates**

JLEIC

| Energy | Current | 1 pass laser (10 W) |           | FP cavity (1 kW) |           |
|--------|---------|---------------------|-----------|------------------|-----------|
| (GeV)  | (A)     | Rate (MHz)          | Time (1%) | Rate (MHz)       | Time (1%) |
| 3 GeV  | 3       | 26.8                | 161 ms    | 310              | 14 ms     |
| 5 GeV  | 3       | 16.4                | 106 ms    | 188              | 9 ms      |
| 10 GeV | 0.72    | 1.8                 | 312 ms    | 21               | 27 ms     |

Only considering Compton cross-section: no background Total average polarization in 27 ms

1320 or 330 bunches both options ok unless high background





#### Photon detector

- Same can be done with photon detector
- Pro:
  - Redundant measurement with electron detector
  - Can measure transverse polarization
- Con:
  - More sensitive to synchrotron background



21

### Photon detection



- Segmented calorimeter
  - PbWO4,
    PbF2
  - Shashlyk
    (scinitillator
    or quartz
    fibers )
  - Particle flow (?)

• Trackers : GEM or MAPS



Jefferson Lab

#### Sensors

- Radiation hard
- Faster than 10 ns (diamond / maps / Cerenkov + MCP PMT, thin gap GEMs)
- Radiation hard where photon flux is high



#### HERA TPOL





24

Jefferson Lab

#### HERA transverse polarimeter







**Jefferson Lab** 

### EIC R&D eRD12



- Study for eRHIC
- Found adequate location
- 2 minutes measurement
- More refined study to come (background)



26

### Conclusion

- Pretty extensive study for JLEIC, electron detector seemed feasible, should work for eRHIC, need location after a magnet
- Event generator can be reused
- Detector need to be implemented in eRHIC
- Redo background studies : bremsstrahlung, synchrotron, halo, beam induced
- Wakefield
- Need to look more at photon side
- R&D for fast detectors for photon side

