

EIC R&D at the University of Birmingham

P. Allport, <u>L. Gonella</u>, P. Jones, P. Newman, H. Wennlöf Kick-off meeting of the EIC-YR Tracking Detectors Working Group 13 February 2020

Birmingham Instrumentation Laboratory - BILPA

- The Birmingham Instrumentation Laboratory for Particle Physics and Applications (BILPA) has been established in 2016 through a University funded initiative aimed at consolidating and expanding its capabilities in semiconductor detector systems R&D and production
- □ The laboratory consists of 200 m² of open-plan cleanroom space (ISO5 and ISO7) and is designed to accommodate work in three main areas
 - Detector development for the High-Luminosity upgrade of the LHC (**HL-LHC**)
 - Generic R&D on semiconductor detectors for future international collider experiments
 - Medical application of particle physics technology
- □ This facility is complemented by a **high intensity irradiation line** at Birmingham MC40 cyclotron
- □ More info at <u>http://www.ep.ph.bham.ac.uk/general/SiliconLab/index.html</u>

BILPA and irradiation facility

Cascade Tesla Semi-automatic Probe station

Metrology on a ITk strip module with a OGP SmartScope Flash 500

 $\overline{\mathbf{mm}}$

L. Gonella | EIC at UoB | YR tracking WG - 13 Feb 2020

BILPA R&D programme

- □ ATLAS Inner Tracker (ITk) upgrade at the HL-LHC
 - The UK will deliver 50% of the ITk strip barrel (~ 6000 modules)
 - Birmingham is one of two **hybrid production** sites, and one of five **module production** sites in the UK
 - The Birmingham irradiation facility is the only proton irradiation site for strip sensor QA
- Generic R&D on semiconductor detectors for future international collider experiments
 - Reconfigurable MAPS in radiation-hard Technology for outer tracking and digital electromagnetic calorimetry at an FCC facility (DECAL sensor)
 - EU funded AIDA2020 generic R&D on **depleted MAPS** (within the ATLAS ITk pixel effort)
 - Precision Central Silicon Tracking & Vertexing for the EIC
 - Development of radiation tolerant Low Gain Avalanche Devices (LGAD) for fast timing application
 - **RD50 R&D** for radiation-hard novel silicon technologies (DMAPS and LGAD)
- □ **Medical application** of particle physics technology
 - □ See backup slide

eRD18: Precision Central Silicon Vertex & Tracking for the EIC

- UoB is working on the development of a detailed concept for a central silicon vertex and tracking detector for a future EIC experiment, exploring the potential advantages of depleted MAPS (DMAPS) technologies
 - This project has been **running since 2016** with continuous support from the EIC Detector R&D Programme
 - Close collaboration with eRD16 (Berkeley): Forward/Backward Tracking at EIC using MAPS Detectors
- The project focuses on the development of an EIC specific sensor and conceptual design of the silicon vertex and tracking detector
 - WP1: Sensor Development
 - □ Exploit on-going R&D in Birmingham into DMAPS to investigate potential solutions for the EIC
 - WP2: Silicon Detector Layout Investigations
 - Study performance requirements in terms of numbers of layers, layout and spatial resolution of the pixel hits

WP1: summary of activities

Technology investigations

- Most suitable technologies for an EIC Si vertex & tracking detector: MAPS or DMAPS sensors
- eRD18 investigated in particular the benefits of using DMAPS technologies (i.e. HV/HR CMOS)
- DMAPS technology for EIC identified and fully characterised: TJ 180nm modified CIS process
 - https://wiki.bnl.gov/conferences/images/9/9a/ERD18_TJ-Summary-Jun19.pdf
 - https://doi.org/10.1016/j.nima.2019.163381
- □ Feasibility study into an EIC specific sensor
 - Carried out in collaboration with RAL CMOS sensor group
 - Preliminary set of **specifications for an EIC specific sensor** compiled
 - Investigate options for the pixel design and readout architecture that would match the requirements for a tracking and vertex detector at an EIC, with the added capability to time stamp individual bunch crossings
 - A suitable low power pixel design architecture has been identified
 - See talk here: https://wiki.bnl.gov/conferences/images/6/65/ERD18ReportJan20v0.1.pdf

WP1: EIC sensor specifications

- A set of requirements for an EIC specific sensor has been compiled based on technology investigations and detector layout simulations
- The time stamping option might require a dedicated sensor to be used in an outer layer
 - Required pixel size and power consumption might be prohibitive for vertex and tracking

Note: these specifications are by no means restricted to DMAPS technologies, and capture the requirements for an EIC sensor independently of the used technology (MAPS or DMAPS)

Detector	Vertex and Tracking	Added time stamping		
Technology	TJ or similar			
Substrate Resistivity [kohm cm]	1			
Collection Electrode	Small			
Detector Capacitance [fF]	<5			
Chip size [cm x cm]	Full reticule			
Pixel size [μm x μm]	20 x 20	max 350 x 350		
Integration Time [ns]	2000			
Timing Resolution [ns]	OPTIONAL < 9 (eRHIC) < 1 (JLEIC)	< 9 (eRHIC) < 1 (JLEIC)		
Particle Rate [kHz/mm ²]	TBD			
Readout Architecture	Asynchronous	TBD		
Power [mW/cm ²]	<35	<200		
NIEL [1MeV neq/cm ²]	10 ¹⁰			
TID [Mrad]	< 10			
Noise [electrons]	< 50			
Fake Hit Rate [hits/s]	< 10 ⁻⁵ /evt/pix			
Interface Requirements	TBD			

WP2: summary of activities

- Basic layout simulations based on EICRoot: <u>completed</u>
 - Baseline performance plots for a Si+TPC and all silicon tracker design
 - A report is being prepared and can be circulated to this WG
- Physics performance simulations: ready to start
 - G4E framework installed and running (thanks for Yulia & Dmitry)
 - Ready to start heavy flavour physics simulations
 - Inform the Detector/Physics Working Group input into the EIC Detector Yellow Report

Emerging alternative technology: ALICE ITS₃ MAPS

- See Leo Greiner's talk at the MIT meeting <u>https://www.jlab.org/indico/event/348/session/5/material/0/0.pdf</u>
- The ALICE ITS3 project aims at developing a new generation MAPS sensor with extremely low mass for the LHC Run4 (HL-LHC)
- □ It is very interesting for an EIC detector in many ways
 - Detector **specifications & timeline** compatible with those of the EIC
 - Innovative development suited to an EIC starting in approx. 10 years
 - Large effort at CERN
 - Non-ALICE members welcomed to contribute to the R&D to develop the technology for other applications

ALICE ITS3

Kickoff meeting held at CERN on December 4, 2019 for "ALICE ITS Upgrade in LS3"

https://indico.cern.ch/event/860914/

The most relevant efforts in this Letter of Intent (endorsed by the LHCC in September 2019) include:

• Silicon R&D for next generation MAPS sensor (with significant improvements)

coupled with

• <u>R&D into extremely low X/X0 cylindrical vertex detection with "bent" silicon</u>

Much of this has already been presented by my colleague Vito Manzari at <u>2019 EIC User Group Meeting</u>, 22-26 July 2019 Paris

ALICE ITS3 sensor

□ The ALICE ITS3 specifications meet or even exceed the EIC requirements

Specifications				
Parameter	ALPIDE (existing)	Wafer-scale sensor (this proposal)		
Technology node	180 nm	65 nm		
Silicon thickness	50 μm	20-40 µm		
Pixel size	27 x 29 μm	O(10 x 10 µm)		
Chip dimensions	1.5 x 3.0 cm	scalable up to 28 x 10 cm		
Front-end pulse duration	$\sim 5 \ \mu s$	$\sim 200 \text{ ns}$		
Time resolution	$\sim 1 \ \mu s$	< 100 ns (option: <10ns)		
Max particle fluence	100 MHz/cm^2	100 MHz/cm^2		
Max particle readout rate	10 MHz/cm^2	100 MHz/cm^2		
Power Consumption	40 mW/cm^2	$< 20 \text{ mW/cm}^2$ (pixel matrix)		
Detection efficiency	>99%	> 99%		
Fake hit rate	< 10 ⁻⁷ event/pixel	< 10 ⁻⁷ event/pixel		
NIEL radiation tolerance	$\sim 3 \times 10^{13} 1 \text{ MeV } n_{eq}/\text{cm}^2$	10^{14} 1 MeV n_{eq}/cm^2		
TID radiation tolerance	3 MRad	10 MRad		

M. Mager | ITS3 kickoff | 04.12.2019

Conclusion

- The BILPA clean rooms are equipped for R&D and production of semiconductor vertex and tracking detectors
- Birmingham has been working on the conceptual design of a silicon vertex and tracking detector for the EIC for more than four years now
 - Collaboration with eRD16 (Berkeley) and RAL CMOS sensor design group
 - Two possible technologies for an EIC sensor have been identified
 - □ TJ 180nm CIS process modified for full depletion (DMAPS) study completed

New generation 65nm ALICE ITS3 sensor (MAPS)

- A preliminary set of specifications for an EIC sensor have been defined
- Options for pixel FE design have been simulated
- More detailed results can be presented at the next meeting of this WG
- Next steps: commence work on ITS3 sensor technology to design the EIC silicon vertex and tracking detector

eRD18 reports and talks

- https://wiki.bnl.gov/conferences/images/0/05/BhamEICProposal-15Jun.pdf
- https://wiki.bnl.gov/conferences/images/3/32/BhamEICProposal.pdf
- https://wiki.bnl.gov/conferences/images/7/7d/ERD18_ReportJan17.pdf
- https://wiki.bnl.gov/conferences/images/e/e3/ERD18UpdateJan17.pdf
- https://wiki.bnl.gov/conferences/images/f/fd/ERD18_ReportJun17.pdf
- https://wiki.bnl.gov/conferences/images/1/1d/ERD18ReportJuly17v3.pdf
- https://wiki.bnl.gov/conferences/images/7/72/ERD18_ProgressReport_Jan2018.pdf
- https://wiki.bnl.gov/conferences/images/7/78/ERD18ReportJan18v1.pdf
- https://wiki.bnl.gov/conferences/images/d/dc/ERD18-Report-FY19Proposal-Jun18.pdf
- □ https://wiki.bnl.gov/conferences/images/9/97/ERD18-FY18Report-FY19Proposal_v2.pdf
- □ <u>https://wiki.bnl.gov/conferences/images/c/c0/ERD18ReportDec18.pdf</u>
- https://wiki.bnl.gov/conferences/images/c/c5/PeterJones.pdf
- https://wiki.bnl.gov/conferences/images/5/59/ERD18_Report-FY20Proposal-Jun19.pdf
- https://wiki.bnl.gov/conferences/images/8/87/ERD18ReportJul19v1.pdf
- https://wiki.bnl.gov/conferences/images/3/30/ERD18_Jan-2020.pdf
- https://wiki.bnl.gov/conferences/images/6/65/ERD18ReportJan20v0.1.pdf
- Summary on DMAPS technology investigations:
 - <u>https://wiki.bnl.gov/conferences/images/9/9a/ERD18_TJ-Summary-Jun19.pdf</u>
 - <u>https://doi.org/10.1016/j.nima.2019.163381</u>

BACKUP

L. Gonella | EIC at UoB | YR tracking WG - 13 Feb 2020

BILPA – Medical applications

- PRaVDA (Proton Radiotherapy Verification and Dosimetry Applications international consortium) using both large format CMOS and silicon strip with proposed future use of DMAPS for tracking
- □ ENLIGHT (CERN led hadron therapy consortium)
- STFC Network+ in Advanced Radiotherapy
- STFC+NPL Enhancement of the UK Primary Standard for Absorbed Dose for Proton Radiotherapy (DMAPS combined with NPL and RAL Microelectronics)
- □ Fast proton therapy verification with tracking detectors and calorimeters
- □ In-situ dose monitoring with prompt gamma rays at end of range
- MonteCarlo tools for medical applications

WP1: starting considerations and baseline

- Science drivers define the requirements for an EIC silicon vertex and tracking detector
 - Open heavy flavour decays high position resolution
 - Precision tracking of high Q² scattered electrons low mass
- □ Baseline: ALICE ITS **ALPIDE** sensor (state-of-the-art **MAPS**)
 - Partially depleted; charge collection in part by drift
 - Small collection electrode = low detector capacitance → low power, low noise, low crosstalk, fast readout

0.18 μm CMOS Tower Jazz
28 x 28 μm² pixel pitch
2 μs time resolution
Power density < 50 mW cm⁻²
50 kHz interaction rate (Pb-Pb)
200 kHz interaction rate (pp)

Inner layer thickness = $0.3\% X_0$ Outer layer thickness = $0.8\% X_0$

TID: 2.7 Mrad NIEL: 1.7 x 10¹³ 1 MeV n_{eq} cm⁻²

WP1: Towards an EIC-specific sensor

Excerpt from EIC Detector Requirements and R&D Handbook

"The EIC would certainly benefit in **improvements in the integration time** as well as in a **further reduction of the energy consumption and material budget** going towards 0.1-0.2% radiation length per layer. Timing-wise the **ultimate goal of this technology would be to time stamp the bunch crossings** where the primary interaction occurred. [...] Concerning spatial resolution the simulations indicate that **a pixel size of 20 microns** must be sufficient."

Electron-Ion Collider Detector Requirements and R&D Handbook, v4

Aim for improved spatial resolution

- □ Smaller pixels, low power/mass (and careful mechanical design)
- Consider readout requirements for the EIC
 - Integration time and time-stamping capability
- eRD18 explored DMAPS technologies to match the required improvements
 - Note: at the time this work started in 2016 DMAPS were the evolution of MAPS
 - MAPS may now have an evolution of their own (see later slides on ITS3)

WP1: Depleted MAPS

Main advantage is charge collection by drift

- Achieved by full depletion of the substrate (HV/HR CMOS)
- Faster and more complete charge collection
- Less charge sharing between pixels
- (also improved radiation hardness)
- □ Two approaches achieve to full depletion
 - Implement a large collection electrode
 - Approach followed in almost all technologies (for example: LFoundry, AMS)
 - Disadvantage: large capacitance
 - Introduce a deep planar junction (only in TJ modified process)
 - □ Advantage: small collection electrode (few µm²)

WP1: survey of DMAPS technology

- This work was presented in July 2018 needs updating!
 - <u>https://wiki.bnl.gov/conferences/images/d/dc/ERD18-Report-FY19Proposal-Jun18.pdf</u>
- State-of-the-art DMAPS prototypes, mainly developed for application at the HL-LHC, optimised for high particle fluences, radiation hardness and fast readout

DMAPS

	ALPIDE	MALTA	TJ-MONOPIX	LF_MONOPIX	ATLASpix_Simple
Experiment	ALICE ITS	ATL	AS ITk pixel Phas	e II (outermost la	yers only)
Technology	TJ 180 nm	Modified	TJ 180 nm	LF 150 nm	AMS 180 nm
Substrate resistivity [kOhm cm]	> 1	(epi-layer 18-2	25 um)	> 2	0.08 - 1
Collection electrode	small	small	small	large	large
Detector capacitance [fF]		<5		Up	to 400
Chip size [cm x cm]	1.5 x 3	2 x 2	1 x 2	1 x 1	0.325 x 1.6
Pixel size [um x um]	28 x 28	36.4 x 36.4	36 x 40	50 x 250	40 x 130
Integration time [ns]	4 x 10 ³	<25			
Particle rate [kHz/mm ²]	10	10 ³			
Readout architecture	Asynch	nronous	Syr	nchronous, colum	n drain
Analogue power [mW/cm ²]	5.4	< 120	~ 110	~ 300	N/A
Digital power [mW/cm ²]	31.5/14.8	N/A	N/A	N/A	N/A
Total power [mW/cm ²]	36.9/20.2	N/A	N/A	N/A	N/A
NIEL [1MeV n _{eq} /cm ²]	1.7 x 10 ¹³	1.0 x 10 ¹⁵			
TID [Mrad]	2.7	50			

A DMAPS sensor for the EIC would benefit from having a small collection electrode → small pixel pitch, low power

analogue FE design

The **TJ 180 nm modified** process is the only one providing **full depletion with a small collection electrode**

WP1: TJ 180 nm CIS process modified

- Developed by CERN-TJ collaboration for HL-LHC tracker upgrades
 - Deep planar junction allows full depletion with small collection electrode
 - Various sensor variants exists for optimised charge collection

- eRD18 studied the performance of this technology with various prototypes in lab and test beams
- □ More complete and faster charge collection wrt standard TJ process (i.e. ALPIDE) demonstrated
- Results are summarised here
 - https://wiki.bnl.gov/conferences/images/9/9a/ERD18_TJ-Summary-Jun19.pdf
 - <u>https://doi.org/10.1016/j.nima.2019.163381</u>

WP1: EIC sensor specifications

- A set of requirements for an EIC specific sensor has been compiled based on technology investigations and detector layout simulations
- The time stamping option might require a dedicated sensor to be used in an outer layer
 - Required pixel size and power consumption might be prohibitive for vertex and tracking

Note: these specifications are by no means restricted to DMAPS technologies, and capture the requirements for an EIC sensor independently of the used technology (MAPS or DMAPS)

Detector	Vertex and Tracking	Added time stamping		
Technology	TJ or similar			
Substrate Resistivity [kohm cm]	1			
Collection Electrode	Small			
Detector Capacitance [fF]	<5			
Chip size [cm x cm]	Full reticule			
Pixel size [μm x μm]	20 x 20	max 350 x 350		
Integration Time [ns]	2000			
Timing Resolution [ns]	OPTIONAL < 9 (eRHIC) < 1 (JLEIC)	< 9 (eRHIC) < 1 (JLEIC)		
Particle Rate [kHz/mm ²]	TBD			
Readout Architecture	Asynchronous	TBD		
Power [mW/cm ²]	<35	<200		
NIEL [1MeV neq/cm ²]	10 ¹⁰			
TID [Mrad]	< 10			
Noise [electrons]	< 50			
Fake Hit Rate [hits/s]	< 10 ⁻⁵ /evt/pix			
Interface Requirements	TBD			

