EICUG Yellow Report: Calorimetry

Subconveners: V.Berdnikov & E.Chudakov

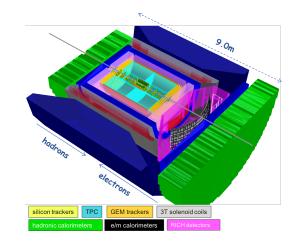
Calorimetry subgroup meeting 2020/02/11

Introduction

- The goal of the Yellow Report
 - Consider the scientific interests of the EIC User Group
 - Develop and study detector concepts and evaluate how well they would meet the scientific requirements
- 6 Physics subgroups, 11 Detector subgroups
- YR Calorimetry subgroup
 - Detector systems:
 - EM calorimeters the endcaps and the barrel
 - Hadron calorimeters the endcaps (barrel?)
 - Very forward calorimeters ?
 - Google group: 38 participants at this moment
 - Calorimetry for EIC: a well advanced project. Existing resources:
 - eRD1 Calorimetry R&D group
 https://wiki.bnl.gov/conferences/index.php/Meetings
 - Documents in https://wiki.bnl.gov/eic/index.php/Main_Page

General Information

Accelerator:


- $10 \times 275 \text{ GeV}$ $\mathcal{L}_{MAX} = 10^{34} \text{cm}^{-2} \text{s}^{-1}$
- Up to 18 × 275 GeV
- Crossing angle 25 mrad
- Rep. rate 110 MHz

Spectrometer:

- Solenoid ID=300 cm, 3 T ?
- Cherenkov/TRD for e/π separation?
- EM calorimeters in magnetic field

"An Electron-Ion Collider Study" BNL, August 2019

78 CHAPTER 2. EIC PHYSICS AND REQUIREMENTS FOR MACHINE DES

eRD1 Report, July 2018

Regions and Physics Goals Calorimeter Design Inner EM Cal for for $\eta < -2$: Lepton/backward: EM Cal o Resolution driven by need to determine (x, Good resolution in angle to order 1 degree to Q2) kinematics from scattered electron distinguish between clusters measurement Energy resolution to order (1.0-1.5) Prefer 1.5%/√E + 0.5% %/√E+0.5%) for measurements of the cluster eneray Ion/forward: FM Cal Ability to withstand radiation down to at least o Resolution driven by deep exclusive 2-3 degree with respect to the beam line. measurement energy resolution with photon Outer EM Cal for -2 < n < 1: and neutral pion ➤ Energy resolution to 7%/√E Compact readout without degrading energy Need to separate single-photon from twophoton events resolution Prefer 6-7%/√E and position resolution < 3 Readout segmentation depending on angle mm Barrel/mid: EM Cal Barrel, EM calorimetry o Photons and neutral pions from SIDIS and Compact design as space is limited DES in range 1-10 GeV, so absolute energy ➤ Energy resolution of at least order 10%/√E, uncertainty in photon should be 100 MeV and likely better Leads to order 10%/√F Ion/Forward: Hadron Cal Hadron endcap: Driven by need for x-resolution in high-x ➤ Hadron energy resolution to order 40%/√E, measurements ➤ EM energy resolution to < (2%/√E + 1%)</p> Need Ax resolution better than 0.05 Jet energy resolution < (50%/√E + 3%) </p> For diffractive with ~50 GeV hadron energy.

this means 40%/√E

Information to be collected

Request for information from the physics/simulation groups:

- Expected rates for various position at $\mathcal{L} = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - Rates/cm² of various particles
 - Energy spectra
- Physics groups should provide the requirements, as functions of detector positions
 - Rates, energy range
 - Needed energy, position resolution, granularity
 - Needed e/π descrimination