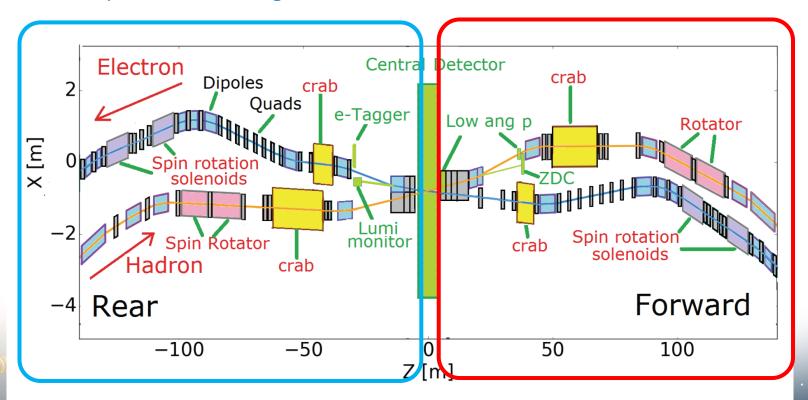


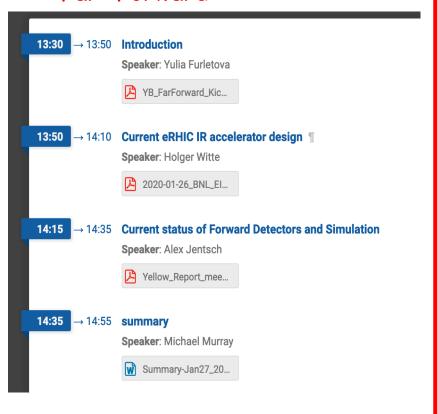
Proposed Talks for Temple

- 1. Overview talk by Julia (i.e. purpose of group, scope, and goals).
- 2. Presentation by Michael Murray (KU) on the TOTEM Roman Pots lessons learned, etc.
- 3. Presentation by Xuan Li (LANL) on B0 silicon sensors.
- 4. Presentation by Alex Jentsch on RP/B0 simulations, plus additional sensors for light nuclear breakup protons (i.e. e+D).
- 5. Presentation by eRD24 on RP sensor R&D progress (TBD).
- 6. One talk on the exclusive physics from someone in that sub-group would also be very helpful (TBD) especially on "golden channels" and available Monte Carlos.
- 7. One technical talk on the IR design from an accelerator person (TBD).
- 8. One talk on ZDC (TBD).
- 9. Talk on low-Q² tagger (TBD).
- We think each talk could be 15'+5', and we could have two morning sessions with a coffee break in between (4 talks in session 1, 4 talks in session 2, with the opening summary talk being 10'+3').
- We are hoping to get as many of the speakers there in person as possible, and will try to find alternatives on the "TBD" to prioritize meeting that goal.
- We could also do 3 session (one after lunch) to allow for slightly longer talks (i.e. 20'+5').

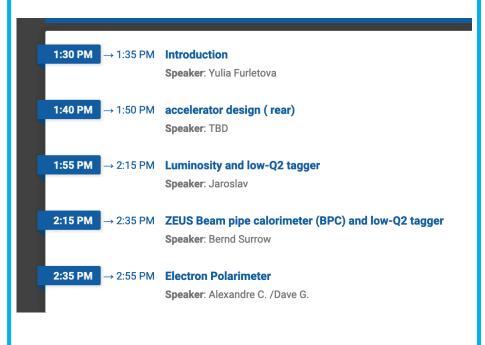
Story so far and next steps


- Work has been done to simulate forward proton and neutron detection to establish acceptances with Roman Pots, silicon sensors in first dipole (B0), and ZDC.
- There has also been substantial work on luminosity monitoring and a low-Q² tagger.
- Presentations in the last two weeks on the IR layout/design, Roman Pots/B0, Lumi. monitor, low-Q², etc.
- Need to now begin the working on selecting technology for silicon (eRD24 for RP, and LANL for B0 - so far) and calorimetery.

Far-forward detectors and IR integration WG mailing list


two meetings (joint):

Far-Forward: https://indico.bnl.gov/event/7548/


Far-Rear: https://indico.bnl.gov/event/7587/

Far-Forward:

Far-Rear:

Need feedback from Physics groups on list of "golden"-channels (with MC samples, if available, preferably in LUND, HEPMC, BEAGLE formats)

Accelerator parameters table

Table 3.3: eRHIC beam parameters for different center-of-mass energies \sqrt{s} , with strong hadron cooling. High divergence configuration.

Species	proton	electron								
Energy [GeV]	275	18	275	10	100	10	100	5	41	5
CM energy [GeV]	140.7		104.9		63.2		44.7		28.6	
Bunch intensity [10 ¹⁰]	20.5	6.2	6.9	17.2	6.9	17.2	4.7	17.2	2.6	13.3
No. of bunches	290		1160		1160		1160		1160	
Beam current [A]	0.74	0.227	1	2.5	1	2.5	0.68	2.5	0.38	1.93
RMS norm. emit., $h/v [\mu m]$	4.6/0.75	845/72	2.8/0.45	391/24	4.0/0.22	391/25	2.7/0.27	196/20	1.9/0.45	196/34
RMS emittance, h/v [nm]	16/2.6	24/2.0	9.6/1.5	20/1.2	37/2.1	20/1.3	25/2.6	20/2.0	44/10	20/3.5
β^* , h/v [cm]]	90/4.0	59/5.0	90/4.0	43/5.0	90/4.0	167/6.4	90/4.0	113/5.0	90/7.1	196/21.0
IP RMS beam size, h/v [μ m]	119/10		93/7.8		183/9.1		150/10		198/27	
K_x	11.8		11.9		20.0		14.9		7.3	
RMS $\Delta\theta$, h/v [μ rad]	132/253	202/202	103/195	215/156	203/227	109/143	167/253	133/202	220/380	101/129
BB parameter, h/v [10^{-3}]	3/2	100/100	14/7	73/100	10/9	75/57	15/10	100/66	15/9	53/42
RMS long. emittance $[10^{-3}, eV \cdot sec]$	36		36		21		21		11	
RMS bunch length [cm]	6	0.9	6	2	7	2	7	2	7.5	2
RMS $\Delta p/p$ [10 ⁻⁴]	6.8	10.9	6.8	5.8	9.7	5.8	9.7	6.8	10.3	6.8
Max. space charge	0.006	neglig.	0.003	neglig.	0.028	neglig.	0.019	neglig.	0.05	neglig.
Piwinski angle [rad]	5.6	0.8	7.1	2.4	4.2	1.2	5.1	1.5	4.2	1.1
Long. IBS time [h]	2.1		3.4		2		2.6		3.8	
Transv. IBS time [h]	2		2		2.3/2.4		2/4.8		3.4/2.1	
Hourglass factor H	0.86		0.86		0.85		0.83		0.93	
Luminosity $[10^{33} \text{cm}^{-2} \text{sec}^{-1}]$	1.	65								

Work is ongoing on implementation of the eRHIC accelerator optics in Geant4 (g4e, EicRoot, etc.) printProgress numberOfThreads useMaximumLogicalCores pinAffinity eventModulo dumpRegion dumpCouples preCDR pRear optics.275GeV.txt breakAtBeginOfEvent breakAtEndOfEvent # Values shown are for the Exit End of each Element: abortCurrentEvent geometryModified reinitializeGeometry #Index name ι physicsModified constructScoringWorlds alpha phi eta storeRndmStatToEvent etap workersProcessCmds setCutForAGivenParticle getCutForAGivenParticle setCutForRegion mean energy deposit in absorber=0 Х mean number of steps in absorber (charged) =0 +mean number of steps in absorber (neutral) =0 +- (0 BEGINNING Beginning_Ele 0.000 0.90348701 detsetup mean number of charged secondaries = 0 +- 0 mean number of neutral secondaries = 0 +- 00.0000000000 0.0096864373 -0.0002440433 -0.0012828422 Choose a command in the command mean number of e-s =0 and e+s =0 (number) transmission coeff=0 reflection coeff=0 WARNING: 10 events have been kept for refreshing and/or reviewing. 1 FSR Floor_Shift 0.000 0.000 0.90348701 "/vis/reviewKeptEvents" to review them one by one.

"/vis/enable", then "/vis/viewer/flush" or "/vis/viewer/rebuild" to see them accumulated 0.0096864373 0.0000000000 -0.0002440433 -0.0012828422 2 D_Q1APR Drift 5.300 5.300 32.00577994 -101.5568071081 1.4008865132 -0.0070431069 -0.0012828422 3 Q1APR Quadrupole 7.100 1.800 71.9891639815 -18.5003188568 747.3831365023 -2.9027719213 1.4402781750 -0.0105403661 -0.0026986983 -0.0915735020 4 D_Q1BPR Drift 7.600 0.500 91.6815434864 750.2890614533 -20.8844401525 -2.9090779807 1.4464327522 -0.0118897153 -0.0026986983 5 Q1BPR Quadrupole 9.000 1.400 181.8019758536 644.3900723086 -46.8672673042 74.4942574427 1.4575669373 -0.0167290119 -0.0043061397 -0.0812169750 10 6 D Q2PR Drift 10.500 1.500 349.6007686297 -64.9985945433 440.2874672384 61.5741459361 1.4635168190 -0.0231882214 -0.0043061397 7 Q2PR Quadrupole 15.000 738.5558598461 176.9425367445 11 4.500 -2.5114155644 8.7276409623 1.4714734952 -0.0336730801 -0.0001067714 0.0310515477 8 D_B2APR Drift 30.498 15,498 818.7771620272 -2.6647534218 11.1753845807 12 1.9682561202 1.4914047885 -0.0353278451 -0.0001067714 13 9 B2APR Sbend 36.198 5.700 849.1202882828 -2.6578490675 2.9074524309 -0.5177415189 1.4982404407 -0.0946750574 -0.0207160772 -0.0206134242 0.0000000000 Drift 10 D_B4PR#1 38.698 2.500 862.4688903582 -2.6815917627 8,2220349765 14 -0.1464652504 -1.6080914993 1.5011617955 -0.0207160772 15 11 Q3APR Quadrupole 40.198 1.500 1015.6215159922 -104.7628776713 12.2457901998 -0.9310425988 1.5028072128 -0.1901420373 -0.0382875143 -0.0705044066 16 12 D B4PR#2 Drift 40.698 0.500 1123.0862516823 -110.1665937039 13.2149446781 -1.0072663577 1.5032753762 -0.2092857944 -0.0382875143

General Goals

- 1. Establish baseline acceptance with current IR design (essentially done for RP/B0, ZDC, Lumi.)
 - Extensively done for proton DVCS, in progress for nuclear breakup with e+D, e+He3, and e+Au with BeAGLE.
- 2. Include realistic reconstruction smearing for momentum and energy (e.g. from beam divergence).
 - Done for Roman Pots/B0 in progress on the others.
- 3. Establish technologies for detector implementation.
 - eRD24 for RP, LDRD from Los Alamos for B0, etc.
- 4. Collaborate with exclusive physics WG, et al. to start simulations for other physics channels of interest (e.g. DVCS w/ light nuclei).
- 5. Iterate with machine folks with a comprehensive picture of current status so targeted improvement to IR design can be discussed.
 - Goal is to avoid piecemeal iterations for low-impact improvements want to be able to suggest high-impact improvements if they are needed, reasonable to implement, or even possible.