A conversation at YR DAQ/electronics kick off

meeting

Jin Huang (BNL)

EIC: unique collider → unique real-time system challenges

	EIC	RHIC	LHC → HL-LHC
Collision species	$\vec{e} + \vec{p}, \vec{e} + A$	$\vec{p} + \vec{p}/A$, $A + A$	p + p/A, $A + A$
Top x-N C.M. energy	140 GeV	510 GeV	13 TeV
Bunch spacing	10 ns	107 ns	25 ns
Peak x-N luminosity	10 ³⁴ cm ⁻² s ⁻¹	10 ³² cm ⁻² s ⁻¹	$10^{34} \rightarrow 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
x-N cross section	50 µb	40 mb	80 mb
Top collision rate	500 kHz	10 MHz	1-6 GHz
dN _{ch} /dη in p+p/e+p	0.1-Few	~3	~6
Charged particle rate	4M N _{ch} /s	60M <i>N</i> _{ch} /s	30G+ <i>N</i> _{ch} /s

• EIC luminosity is high, but collision cross section is small ($\propto \alpha_{EM}^2$) \rightarrow low collision rate

- Lower collision rate and small event size \rightarrow signal data rate is low
- But events are precious and have diverse topology. Background and systematic control is crucial

EIC DAQ in Geant4 simulation

Note sPH-cQCD-2018-001: https://indico.bnl.gov/event/5283/ , Simulation: https://eic-detector.github.io/

e+p DIS 18+275 GeV/c Q² ~ 100 (GeV/c)²

Beam gas event p + p, 275 GeV/c at z=-4 m

BROOKHAVEN NATIONAL LABORATOR

Jin Huang <jhuang@bnl.gov>

Signal data rate -> DAQ strategy

Note sPH-cQCD-2018-001: https://indico.bnl.gov/event/5283/ , Simulation: https://eic-detector.github.io/

- ▶ What we want to record: total collision signal ~ 100 Gbps @ 10³⁴ cm⁻² s⁻¹
 - Assumption: sPHENIX data format, 100% noise
 - Less than sPHENIX peak disk rate. 10⁻⁴ comparing to LHC collision
- Therefore, we could choose to stream out all EIC collisions data
- In addition, DAQ may need to filter out excessive beam background and electronics noise, if they become dominant.
 - Very different from LHC, where it is necessary to filter out uninteresting p+p collisions (CMS/ATLAS/LHCb) or highly compress collision data (ALICE)
 - Such filtering does not require real-time event reconstruction

A strategy for an EIC real-time system

- For the signal data rate from EIC (100 Gbps), we can aim for filtering-out and streaming all collision in raw data without a hardware-based global triggering
 - Diversity of EIC event topology \rightarrow streaming DAQ enables expected and unexpected physics
 - Streaming minimizing systematics by avoiding hardware trigger decision, keeping background and history
 - At 500kHz event rate, multi-µs-integration detectors would require streaming, e.g. TPC, MAPS

Requirement

- All front-end to continuously digitize data or self-triggering
 e.g. PHENIX FVTX, STAR eTOF, all sPHENIX trackers, any many prototypes in eRD23 consortium
- Reliably synchronize all front-ends and identify faults
- Recording all collision data (100 Gbps if raw)
- If needed, filtering out background with low signal loss (10⁻⁴?)
- Requiring reliable data flow \rightarrow control systematics:
- Low data loss rate $< 10^{-4}$ (?) and/or loss in a deterministic manor

Streaming/trigger hybrid strategy

- At the start of EIC operation
 - Background could be significantly higher
 - Same time: lossy software data reduction is not yet established
- Possible solution at initial operation: Hybrid streaming readout with a calorimeter trigger
 - Many high profile EIC physics event leave distinct calorimeter signature for triggering (e.g. DIS/DVCS)
 - Use calo trigger to throttle streaming data to ensure lossless record full triggered event
 - Fill rest DAQ bandwidth with streaming data outside triggered time-window
 - Sliding scale adjust two data streams.
 Reference: LHCb Turbo stream, sPHENIX tracker DAQ (later this talk)
- Later running: Trigger/sync signal from the trigger components could be used for data validation and calibration
 - E.g. periodically send slow calibration/laser trigger pulses and collect non-zero suppressed data from for gain/pedestal calibration

Jin Huang <jhuang@bnl.gov>

Timing and synchronization

- Precision timing is relative (e.g. ToF, TPC, coincidence), with exception that we need to know which bunch is colliding
- Therefore, collider experiment DAQ and FEE usually sync to beam bunch RF/collision clock
 - Then we need to be able to handle variation in beam clock. EIC clock variation seems simpler than RHIC (no ramp, weaker energy dependence), but design still on going
- EIC RF : modifying or rebuilding RHIC 28 MHz RF cavities as 24.5 MHz resonators
 - In discussion with RHIC RF group on testing sPHENIX timing distribution chain at RF clock source
- Timing system also collect/distribute busy, to ensure loss is uncorrelated with event type

Streaming readout for sPHENIX trackers

BROUKHAVEN NATIONAL LABORATORY

Jin Huang <jhuang@bnl.gov>

8

Summary

- DAQ driven by uniqueness of EIC, very different from fix target or LHC
- Beam-clock-based experiment clock is commonly used, driven by physics such as proton spin sign and luminosity counting
- DAQ simulation for an EIC detector concept
- Proposing a streaming DAQ requirement
 - All front-end to continuously digitize data or self-triggering
 - Reliably synchronize all front-ends and identify faults
 - Recording all collision data (100 Gbps if raw)
 - If needed, filtering out background with low signal loss (10⁻⁴?)
 - $\,\circ\,\,$ Requiring reliable data flow \rightarrow control systematics
- Streaming hardware @ BNL
 - Streaming readout detectors: PHENIX strip tracker (2012-2016), STAR endcap time-of-flight (2018+), sPHENIX tracking system (2023+, ALPIDE, FPHX, SAMPA v5), Generic digitizer testground with 4Gsps single-chip ADC+FPGA+ARM (XCZU28DR)
 - FELIX-type DAQ interface (LDRD)
 - Prototyping timing system (sPHENIX R&D)