

University of Birmingham simulation effort update

P.P. Allport, L. Gonella, P. Ilten, P.G. Jones, P.R. Newman, <u>H. Wennlöf</u> 27/2 -2020

Outline

- EICROOT simulations overview
- G4E UoB status
- G4E UoB needs and questions

A

EICROOT simulations

- Momentum resolution and pointing resolution investigated.
- Pixel size and detector layout investigated, as well as silicon disks, and an all-silicon layout.
- Complete list and details of the simulations carried out can be found in the simulation report ("Simulations of a silicon vertex tracker for a future EIC").

EICROOT stave detail

EICROOT representation of inner and outer staves, based on the ALICE ITS upgrade.

- TGeo implementation.
- Composed of several materials;
 - Silicon
 - Kapton flex cable
 - Aluminium flex cable
 - Carbon fibre cold plate
 - Carbon fibre support beams
 - Kapton water pipes with water
- Thicknesses based on ALICE ITS Upgrade TDR.

Example simulation and results

- Barrel layout studies.
 - Different number of silicon layers tested
- Simulation parameters:
 - Particle: π⁺
 - Transverse momentum range: 0 to 50 GeV/c
 - Pseudorapidity range: $-0.5 \le \eta \le 0.5$
 - Number of events: 100 000
 - Silicon pixel size: 20×20 µm²
 - Gas TPC present outside the silicon barrel
 - Magnetic field: 1.5 T
- Resulting resolution plots shown on the right. Details available in simulation report.

Relative momentum resolution

Transverse pointing resolution

EICROOT simulations – key results

- Best silicon vertex tracker layout:
 - two inner layers
 - three outer layers
 - disks in the forward and backward regions
- Detector benefits from small pixel size.
 Optimum currently considered to be 20x20 µm².

Sketch of silicon vertex tracker layout, with disks and gas TPC.

EICROOT simulations – key results

- All-silicon concept viable. If more compact design desired, all-silicon concept with disks and rings is preferred compared to Si+gas.
- Details can be found in the simulation report ("Simulations of a silicon vertex tracker for a future EIC").

Sketch of all-silicon concept, with disks and rings.

G4E – UoB status

- Installed locally using a combination of ejpm and CMake (instructions used found here: https://g4e.readthedocs.io/en/latest/install.html).
 - Able to modify active detector parts, and details about the detector parts.
 - eRHIC beamline selected.
- Constructed basic version of the SVT in G4E
 - Slabs of silicon (i.e. not as detailed as EICROOT) with correct total radiation length.
- Can import and propagate Pythia events through the detector.
- Can extract hit information.

G4E – UoB needs and questions

- Gas TPC simulation?
 - Currently silicon layers and straw tubes implemented.
 - EICROOT gas TPC implementation was basic, by track length.
- Reconstruction
 - Some tools available, but I need help to understand and modify.
 - Can get the MC hits out, but how to smear them properly?
 - EICROOT does Gaussian smearing around detector hit.
 - After smearing: reconstruction using smeared hits. Ideal tracking implementation?

- What level of detail do we need?
 - G4E SVT implementation currently a step back in detail compared to EICROOT.
- Help needed to proceed further with smearing and reconstruction.