

Outline

Introduction

Data and object reconstruction performance

Cross section measurements

aTGCs limit setting

The precision

Summary

Introduction

☐ Diboson production at ATLAS

- The considered processes in this talk
 - \Rightarrow pp \rightarrow W γ , Z γ , WW, WZ, ZZ
- Large statistics and clean signature
 - Large production rate at high \sqrt{s}
 - Clean signature with leptontic decays of heavy bosons
 - \Leftrightarrow High pt (isolated) leptons/photons, E_T^{miss} from boson decays
- Sensitive to theoretical calculations
 - \diamond Large NLO/LO QCD k-factor at high \sqrt{s}
 - Non-negligible NNLO QCD and NLO electroweak corrections
 - Gluon resummation effect on exclusive measurement (e.g. in jet bins)
- Sensitive to new physics
 - Search for new particles decaying to vector boson pairs (W', Z', gravitons, ...)
 - Probe anomalous triple-gauge-boson-couplings (aTGCs)
 - Probe anomalies in vector boson scattering
- Irreducible background to Higgs measurement (Zγ, WW, ZZ)

Event display of a WZ candidate event (WZ $\rightarrow \mu\mu\mu\nu$)

Data collected at ATLAS

Integrated luminosity for physics analysis

4.6 fb⁻¹ at 7 TeV 20.3 fb⁻¹ at 8 TeV

Data taking efficiency

~ 94%

Detector operation fraction

> 97%

Very stable detector performance

Demonstration of an event with O(25) vertices

Crucial to correct for the pile-up effects in momentum and energy measurements

Reconstruction Performance e, µ

Precise calibration of energy scale and resolution for e/μ and Good modelling in MC

Reconstruction Performance γ , E_T^{miss}

Precise energy scale / resolution determination for photon Good modelling of pileup effects for E_T^{miss}

Good detector calibration and Well simulated MC are essential for precision measurement

Measured cross sections comparable with SM predictions at NLO precision

☐ Cross section measurements

Definition of fiducial and total cross sections

$$\bullet \quad \sigma_{fid} = \frac{N_{obs} - N_{bkg}}{C \cdot \mathcal{L}}, \, \sigma_{tot} = \frac{N_{obs} - N_{bkg}}{A \cdot C \cdot \mathcal{L} \cdot Br}$$

- ❖ A: kinematic and geometric acceptance from total phase space to fiducial region
- ❖ C: efficiency correction in the fiducial region due to reconstruction effects
- Extraction/Combination of cross sections from decay channels
 - Maximize extended Log-likelihood functions based Poisson statistics

$$-\ln L(\sigma, \{x_k\}) = \sum_{i=1} -\ln \left(\frac{e^{-(N_s^i(\sigma, \{x_k\}) + N_b^i(\{x_k\}))} \times (N_s^i(\sigma, \{x_k\}) + N_b^i(\{x_k\}))^{N_{\text{obs}}^i}}{(N_{\text{obs}}^i)!} \right) + \sum_{k=1}^n \frac{x_k^2}{2}$$

- Least Square with covariance matrices
- Comparison of data and prediction in fiducial region
 - Unfold data distributions by correcting for detector effects
 - direct comparison with MC
 - Methods being used: iterative Bayesian method, etc.

Nucl. Instrum. Methods Phys. Res., Sect. A 362, 487 (1995)

10

☐ Included in this talk

- Brief summary of 7TeV results (4.6 fb⁻¹)
 - ❖ Wγ, Zγ, WW, WZ, ZZ
 - ♦ WW+WZ*, WW→evμν (Simultaneous Fit)
- The 8TeV results (13-20fb⁻¹)
 - ❖ WZ, ZZ
 - More focus on the recent results
 - Z->4l (extension of 4l mass spectrum to Z pole)
 - WW

^{*} Final state with semi-leptonic decays of heavy vector bosons, it means fully leptonic decay if no "*"

7TeV: Wγ, **Z**γ

Final state: $W\gamma \rightarrow l\nu \gamma$

+ signature: e/μ , E_T^{miss} , γ , $\Delta R(l, \gamma) > 0.7$

+ backgrounds: Z+jets, γ +jets, ttbar, τ decays

+ S/B ~ 1.5

Final state: $Z\gamma \rightarrow II \gamma$ or $Z\gamma \rightarrow vv \gamma$

+ signature: ee/ $\mu\mu$ or E_T^{miss} , γ , $\Delta R(l, \gamma) > 0.7$

+ backgrounds: Z+jets, W+X, τ decays

+ S/B > 5

Typical uncertainty at 5 - 10%, dominated by photon ID systematics

Exclusive region defined with zero jet (30GeV)

Phys. Rev. D 87, 112003 (2013)

Cross section 7TeV: ww

Final state: WW-> l^+vl^-v (τ decays included)

- + e, μ , E_T^{miss}
- + backgrounds: Z+jets, Top, W+jets, other diboson
- + require 0 jet (25GeV)
- + cut on relative $E_T^{miss\,*}$ and p_T^{ll} to reduce Z+jets
- + S/B ~ 2
- + about 4% stat. error and 8% syst. error

*
$$E_{\mathrm{T, Rel}}^{\mathrm{miss}} = \begin{cases} E_{\mathrm{T}}^{\mathrm{miss}} \times \sin(\Delta\phi) & \text{if } \Delta\phi < \pi/2 \\ E_{\mathrm{T}}^{\mathrm{miss}} & \text{if } \Delta\phi \geq \pi/2 \end{cases}$$

 $\Delta \phi$ is the smallest azimuthal angle difference between lepton and E_T^{miss}

$$\sigma_{tot}^{NLO}=44.7\pm2.0~{
m pb}$$
 $\sigma_{tot}^{Measured}=51.9\pm2.0~(stat.)\pm3.9(syst.)\pm2.0(lumi.)~{
m pb}$

Phys. Rev. D 87, 112001 (2013)

7TeV: WZ, ZZ

Final state: WZ \rightarrow IV II (τ excluded in fid. region)

- + three leptons (e/ μ), E_T^{miss}
- + backgrounds: Z+jets, ZZ
- + S/B ~ 3.5
- + Inclusively ~7% stat. and ~5% syst. error

$$\sigma_{tot}^{NLO} = 17.6 \pm 1.1 \text{ pb, } 66 < m_{ll} < 116 \text{ GeV}$$
 $\sigma_{tot}^{Measured} = 19.0 \pm 1.4 (stat.) \pm 0.9 (syst.) \pm 0.4 (lumi.) \text{ pb}$

Final state: $ZZ^{(*)} \rightarrow 4I$ or 2I2v (τ excluded in fid.)

- + four leptons (e/ μ) or two leptons + E_T^{miss}
- + backgrounds: Z+jets, Top, WZ, WW
- + S/B > 5 (4I), ~1 (2I2v)
- + Inclusively ~10% stat. and ~6% syst. error

 $\sigma_{tot}^{NLO} = 5.9 \pm 0.2 \text{ pb}$ $\sigma_{tot}^{Measured} = 6.7 \pm 0.7 (stat.) \pm 0.4 (syst.) \pm 0.3 (lumi.) \text{ pb}$

7TeV: others

+ e/μ , E_T^{miss} , two jets

Template fit used to extract cross section
Measured σ Consistent with SM prediction
~ 30% systematic uncertainty

Will be discussed in details by B. Lindquist

Final state: WW → evµv

+ Likelihood fit to simultaneously determine the cross-sections for Z→ττ, ttbar and WW processes

Consistent with dedicated WW analysis ~15% systematic uncertainty

8TeV: WZ

Event selection (WZ->3l+v):

- \circ Three isolated leptons (p_T >15GeV)
- m_{ll} consistent with Z mass within 10GeV, pair of leptons with min $|m_{ll}-m_Z|$ to form a Z
- \circ Third lepton (W lepton) p_T >25GeV
- \circ E_T^{miss} > 25 GeV, m_T^W > 20 GeV

With 13 fb⁻¹ pp collision data at 8 TeV

Backgrounds and Uncertainties:

- Z+jets, Top: data-driven
- ZZ, W/Z+γ: MC
- ~1000 candidates, S/B ~ 3
- Uncertainties on measured σ
 - about 4% stat. error
 - 7% syst. Uncertainty (bkg., lepton, lumi.)

Consistent with NLO prediction

8TeV: ZZ

Event selection (ZZ->4I):

 \circ Four isolated leptons (p_T >7GeV), at least one lepton with p_T >25GeV

Backgrounds and Uncertainties:

- Background: 2l+X, 3l+X → data driven
- ~300 candidates, S/B ~ 10 (Clean!)
- Uncertainties on measured σ
 - about 7% stat. error
 - 5% syst. (lepton, lumi.)

With 20 fb⁻¹ pp collision data at 8 TeV

ATLAS-CONF-2013-020

Cross section 8TeV: Z→41 New!

\square 4*l* production at Z resonance ($\mathbb{Z} \rightarrow 4l$) at the LHC

T channel, <4%

gg fusion, ~0.1%

*Phase space: $m_{4\ell} \in [80, 100]$ GeV, $m_{2\ell} > 5$ GeV

□ Physics motivation

- Building block of complete 4l mass spectrum
- Test of detector response at low E,p

□ Data and selection

- Both 7 and 8 TeV data are used
- At least four leptons

 - $p_T > 20, 15, 8, 4 \text{ GeV}$
- $-m_{2l}^{lead}$ >20, $m_{2l}^{sub-lead}$ >5 GeV
- 80 GeV < m₄₁ < 100 GeV

Cross section 8TeV: Z→41 New!

Phys. Rev. Lett. 112, 231806 (2014)

	$\sigma_{tot}^{Measured}$ (fb) *	σ_{tot}^{NLO} (fb)
\sqrt{s} = 7 TeV	76±18±4±1.4	90.0±2.1
\sqrt{s} = 8 TeV	107±9±4±3.0	104.8±2.5

^{*} in phase space, uncertainties: ±stats. ±syst. ± lumi.

Consistent with SM prediction

$$S/B = 100 / 1!$$

In total observed 172 candidate events, 170 expected ~10% statistical uncertainty and 5% systematics

18

❖ Extraction of the Z→4l branching fraction

$$\frac{\Gamma_{Z\to4\ell}}{\Gamma_{Z}} = \left(\frac{\Gamma_{Z\to\mu\mu}}{\Gamma_{Z}}\right) \frac{\left(N_{4\ell}^{\text{obs}} - N_{4\ell}^{\text{bkg}}\right) \left(1 - f_{\text{nr}}\right) C_{2\mu} \cdot A_{2\mu}}{\left(N_{2\mu}^{\text{obs}} - N_{2\mu}^{\text{bkg}}\right) C_{4\ell} \cdot A_{4\ell}}$$

- Reduced theory uncert. with $Z \rightarrow \mu\mu$ events
- \circ $Br_{Z\to\mu\mu}$ from PDG, $1-f_{nr}$: subtract non-resonance contribution

Combined
$$(3.20\pm0.25~{\rm (stat)}\pm0.12~{\rm (syst)})\times10^{-6}$$
 Expected $(3.33\pm0.01)\times10^{-6}$

WW signal: qq \rightarrow WW, gg \rightarrow (H) \rightarrow WW $\sigma_{tot} = 58.7 \pm 3.0 \text{ pb}$

53.2±2.5 pb (MCFM, NLO)

1.4±0.3 pb (MCFM, LO) 4.1±0.5 pb (NNLO+NNLL, NLO EWK)

arXiv:1307.1347

Previous LHC results show higher cross section than prediction

	$\int L \text{ (fb-1)}$	$\sigma(pp \to WW) \times B \text{ (pb)}$	SM NLO*
ATLAS 7TeV	4.6	$51.9 \pm 2.0(stat.) \pm 3.9(syst.) \pm 2.0(lumi.)$	44.7±2.0
CMS 7TeV	4.9	$52.4 \pm 2.0(stat.) \pm 4.5(syst.) \pm 1.2(lumi.)$	_
CMS 8TeV	3.5	$69.9 \pm 2.8(stat.) \pm 5.6(syst.) \pm 3.1(lumi.)$	54.6±2.5

Phys. Rev. D 87, 112001 (2013); CMS PAS SMP-12-005, CMS PAS SMP-12-013

^{*} Higgs contribution not included

- □ Signature: two high-pt leptons and large MET (ee, μμ, eμ)
- **□** Backgrounds
 - Top (ttbar, Wt), Z+jets, Other Diboson, W+jets
- **□** Selection
 - Two leptons: Pt>25, 20 GeV
 - Remove Z peak in same flavor channel
 - Cut on relative E_T^{miss} , track-based p_T^{miss} , $\Delta \phi(E_T^{miss}, p_T^{miss})$ to reduce Z+jets
 - Require zero jets (25GeV) to reduce Top

Data-driven Background estimation (relative uncertainty in bracket)

- ❖ Top: ttbar + single top (10%)
 - jet veto efficiency measured from data in b-tagged control region. Apply this
 efficiency on data events with inclusive jet bins to extract to signal region
- ***** Z+jets (20%)
 - Likelihood fit on both Z+jets dominated control region and signal region with only free parameters of signal and Z+jets normalization, systematics considered as nuisance parameter, and other backgrounds fixed as their data-driven yields.
- ❖ W+jets (50%)
 - Rely on the measured jet faking lepton probability from dijet events (f) and the real lepton selection efficiency (r) to determine the true origin of reconstructed events

 - Major systematics: jet flavor composition

Signal acceptance and uncertainty (PowHeg + Pythia 8)

Channels	C_{WW}	$A_{WW} \times C_{WW}$
ενμν	0.511 ± 0.025	0.116 ± 0.007
evev	0.291 ± 0.021	0.025 ± 0.002
μνμν	0.471 ± 0.033	0.044 ± 0.004

Overall efficiency ~ 10% uncertainty ~ 6% (Lepton, Jet, MET, JVSF*)

* Use Z events in data to constrain

MC jet-veto efficiency: SF =
$$\frac{\varepsilon_{\rm Z}^{data}}{\varepsilon_{\rm Z}^{MC}} \sim 1$$

<2% statistical uncertainty
~8% systematic uncertainty
About 2 σ higher than SM
prediction

Comments of observed excess (20% difference v.s. 10% uncertainty)

- **❖** Full NNLO QCD qq calculation could increase the inclusive NLO qq σ
 - +5%, arXiv:1408.5243v1
- Sizable effect possible due to PDFs
 - +5% with ATLAS PDF, Phys.Rev.Lett. 109 (2012) 012001
- **❖** NNLO/LO k-factor for gg->WW non resonant contribution
 - \circ If assume same k-factor as gg->H->WW, will see +5% increase on total σ
- Modelling on the gluon resummation
 - A few percent to O(10%) effect on fiducial cross section
 - o arXiv:1407.4481v1, arXiv:1407.4537v1
- Other possible effects at or smaller than O(1%) level to total cross section
 - \circ NLO electroweak correction, $\gamma\gamma$ ->WW, vector boson scattering, double parton interaction

Limits on aTGCs aTGCs parameters

☐ Indirect search for new physics with aTGCs

Effective Lagrangian with anomalous couplings (Used in 7TeV results)

WWV vertices (V=Z, γ) WW/WZ/W γ processes

$$\Delta g_1^Z, \Delta \kappa_Z, \Delta \kappa_\gamma, \lambda_Z, \lambda_\gamma$$

ZZV vertices ZZ process

$$f_4^Z, f_4^{\gamma}, f_5^Z, f_5^{\gamma}$$

ZγV vertices Zγ process

$$h_3^Z, h_3^{\gamma}, h_4^Z, h_4^{\gamma}$$

- * aTGCs all zero in SM, neutral vertices not existing in LO
- Charged aTGCs: C and P conservation
- h_3^V, h_4^V, f_5^V : conserve CP, f_4^V : violate CP conservation
- Need a form factor (Λ) to preserve unitarity $\alpha(\hat{s}) = \frac{\alpha_0}{(1+\hat{s}/\Lambda^2)^n}$
- Effective field theory approach with new physics scale of Λ

$$\mathscr{L}_{ ext{eff}} = \mathscr{L}_{ ext{SM}} + \sum_{ ext{dimension } d} \sum_i \overline{\binom{c_i^{(d)}}{\Lambda^{d-4}}} \mathcal{O}_i^{(d)}$$
 Without the need of form factor

Two set of parameters are interconvertible

Limits on aTGCs Approaches

+ Sensitive to $\sqrt{\hat{s}}$

 p_T^l , p_T^V , invariant mass, etc. Proper binning to optimize sensitivity

+ General workflow

- 1) Obtain distributions with aTGCs
- Construct likelihood function and incorporating systematics
- 3) 95% C.L. Limit from Δlog-likelihood, Bayesian, Frequentist methods

☐ Approaches to obtain distributions with aTGCs

- Event-by-event reweighting on MC@NLO MC events (WZ)
- Use 3D bin-by-bin parameterization derived from BHO generator and apply on MC events (WW)
- MC@NLO MC events with Matrix-element reweighting to BHO (ZZ)
- Fiducial distributions from MCFM (W γ /Z γ)

Limits on aTGCs 7TeV results

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

Data consistent with SM prediction, limits comparable to LEP/Tevatron

Limits on aTGCs

7TeV results

Data consistent with SM prediction, stringent limits set for neutral aTGCs

	ATLAS	CMS	Final State
f_{γ}^4	[-0.015, 0.015]	[-0.013, 0.015]	ZZ
f_Z^4	[-0.013, 0.013]	[-0.011, 0.012]	ZZ
f_{γ}^{5}	[-0.016, 0.015]	[-0.014, 0.015]	ZZ
f_Z^5	[-0.013, 0.013]	[-0.014, 0.014]	ZZ
h_{γ}^3	[-0.015,0.016]	[-0.0032, 0.0032]	$Z\gamma$
h_Z^3	[-0.013, 0.015]	[-0.0032, 0.0032]	$Z\gamma$
h_{γ}^4	[-0.000094, 0.000092]	[-0.000016, 0.000016]	$Z\gamma$
h_Z^4	[-0.000087,0.000087]	[-0.000014, 0.000014]	$Z\gamma$
	_		

Table from arXiv:1406.7731v2

The Precision

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults

The Precision

Fractional uncertainty for inclusive measurement (stat. / syst.)

	W+γ	Ζ+γ	ww	WZ	ZZ
7 TeV, 4.6 fb ⁻¹	1% / 13%	1.5% / 9%	4% / 8.5%	7.5% / 5%	10.5% / 7.5%
8 TeV, 13-20 fb ⁻¹	-	-	1.7% / 7.7%	4% / 7%	7% / 5.5%

About 10% precision: systematic uncertainty dominates (leptons/photons, bkg., lumi.)

$$\frac{\sigma^{VV}(\sqrt{s} = 13 \, TeV)}{\sigma^{VV}(\sqrt{s} = 8 \, TeV)} \sim 2$$

Better precision at Run II?

- Comparable statistics in 2015
- Systematic uncertainty
- MC modelling
 - Essential for acceptance calculation
 - NLO MC in use: POWHEG, MC@NLO

Summary

☐ Diboson measurements with 7, 8 TeV pp collision data

- Precise measurement with full data
 - Smooth data-taking and detector operation in 2011/2012
 - Precise detector calibration and stable reconstruction performance
- Total and fiducial cross sections for pp \rightarrow W γ , Z γ , WW, WZ, ZZ
 - Comparable with NLO prediction
 - Sensitive to higher order corrections/contributions
- aTGCs limits with 7 TeV data
- Recent 8TeV results:
 - ❖ Z->4l phase space cross section and branching fraction
 - ❖ WW total/fiducial cross section
- Stay tuned for more results with full 8 TeV data
 - Final papers for WW/WZ/ZZ, etc.
- Looking forward to Run II!

Backup

ATLAS Detector

ATLAS (A Toroidal LHC ApparatuS): $44 \times 25m$, 7000t Inner tracking $|\eta| < 2.5$, EM calo $|\eta| < 3.2$, Hadronic calo $|\eta| < 4.9$, Muon system $|\eta| < 2.7$ ATLAS collaboration 3k physicists from 38 countries

Reconstruction Performance e, µ

Stable performance of electron and muon reconstruction and good modelling in MC

Reconstruction Performance γ , jet, E_T^{miss}

Good handle on pileup effects and well simulated MC are essential for precision measurement

More details on 8 TeV Z->4l measurement

\sqrt{s}	4ℓ state	$N_{4\ell}^{\mathrm{obs}}$	$N_{4\ell}^{\mathrm{exp}}$	$N_{4\ell}^{ m bkg}$	$C_{4\ell}$	$\sigma_{Z4\ell}^{\mathrm{fid}}$ [fb]	$A_{4\ell}$		$\sigma_{Z4\ell}$ [fb]
7 TeV	ee + ee	1	1.8 ± 0.3	0.12 ± 0.04	21.5%	$0.9^{+1.4}_{-0.7} \pm 0.14 \pm 0.02$	7.5%	$\}$ $4e, 4\mu$	$32 \pm 11 \pm 1.0 \pm 0.6$
	$\mu\mu + \mu\mu$	8	11.3 ± 0.5	0.08 ± 0.04	59.2%	$3.0^{+1.2}_{-0.9} \pm 0.07 \pm 0.05$	18.3%	$\int 4e, 4\mu$	32 ± 11 ± 1.0 ± 0.0
	$ee + \mu\mu$	7	7.9 ± 0.4	0.18 ± 0.09	49.0%	$3.1^{+1.4}_{-1.1} \pm 0.16 \pm 0.05$	15.8%	$egled_{2e2\mu}$	$44 \pm 14 \pm 3.3 \pm 0.9$
	$\mu\mu + ee$	5	3.3 ± 0.3	0.07 ± 0.04	36.3%	$3.0^{+1.6}_{-1.2} \pm 0.30 \pm 0.06$	8.8%	$\int \frac{2e^2\mu}{}$	44 ± 14 ± 5.5 ± 0.5
	combined	21	24.2 ± 1.2	0.44 ± 0.14					$76 \pm 18 \pm 4 \pm 1.4$
8 TeV	ee + ee	16	14.4 ± 1.4	0.14 ± 0.03	36.1%	$2.2^{+0.6}_{-0.5} \pm 0.20 \pm 0.06$	7.3%	$\}$ $4e, 4\mu$	$56 \pm 6 \pm 1.8 \pm 1.6$
	$\mu\mu + \mu\mu$	71	68.8 ± 2.7	0.34 ± 0.05	71.1%	$4.9^{+0.7}_{-0.6} \pm 0.13 \pm 0.14$	17.8%	$\int 4e, 4\mu$	30 ± 0 ± 1.0 ± 1.0
	$ee + \mu\mu$	48	43.2 ± 2.1	0.32 ± 0.05	55.5%	$4.2^{+0.7}_{-0.6} \pm 0.16 \pm 0.12$	14.8%	$egled_{2e2\mu}$	$52 \pm 7 \pm 2.4 \pm 1.5$
	$\mu\mu + ee$	16	19.3 ± 1.3	0.18 ± 0.04	46.2%	$1.7^{+0.5}_{-0.4} \pm 0.10 \pm 0.04$	7.9%	$\int \frac{2e^2\mu}{}$	32 ± 7 ± 2.4 ± 1.0
	combined	151	146 ± 7	1.0 ± 0.11					$107 \pm 9 \pm 4 \pm 3.0$

Phys. Rev. Lett. 112, 231806 (2014)

More details on 8 TeV WW measurement

F-fake, R-real

r-signal lepton efficiency, f-fake rate

T-tight lepton, L-loose lepton

Matrix method

→ Loose lepton definition

No IP/Isolation requirements
For electrons, further loose eID to MediumLLH

→ Fake rate

measured from dijet events with supporting triggers trigger dependent fake-rate applied

→ Systematics:

sample dependence, lepton efficiency

On W+jets

More details on 8 TeV WW measurement

☐ Data-driven method based on probability of jet to pass jet-veto cut

- 1st data control region: events with full event selection without jet-veto cut, further apply Ht* to reduce the WW signal contamination. The MC jet-veto efficiency is P_1^{MC}
 - * Ht is scalar sum of pt for leptons and jets
- 2nd data control region: a subset of 1st CR with a b-jet identified in the events.
 - The probability is calculated from 2^{nd} CR, as $P_{2(Btag)}^{Data}$ or $P_{2(Btag)}^{MC}$
- Formula

$$P_1^{DATA} = P_1^{MC} imes \left(rac{P_{2(Btag)}^{DATA}}{P_{2(Btag)}^{MC}}
ight)^2$$

$$N_{Top}^{DATA}(0 jet) = N_{Top}^{DATA}(all) \times P_1^{DATA} / \varepsilon_{Ht}$$

❖ Uncertainty ~ 10%

JES/JER/b-tagging, MC generator/Parton Shower

On Top

More details on 8 TeV WW measurement

Channel	$e^{\pm}\mu^{\mp}$	e^+e^-	$\overline{\mu^+\mu^-}$
Observed Events	5067	594	975
Total expected events	$4376 \pm 26 \pm 280$	$536 \pm 10 \pm 42$	$873 \pm 12 \pm 63$
MC WW signal	$3224 \pm 10 \pm 248$	$346 \pm 3 \pm 32$	$610 \pm 5 \pm 56$
Top(data-driven)	$609 \pm 18 \pm 52$	$92\pm7\pm8$	$127 \pm 9 \pm 11$
W+jets(data-driven)	$220 \pm 15 \pm 112$	$14\pm5\pm9$	$3\pm5\pm6$
Z+jets (data-driven)	$166 \pm 3 \pm 26$	$55\pm1\pm23$	$96\pm2\pm27$
Other dibosons (MC)	$157 \pm 4 \pm 31$	$30\pm2\pm5$	$39\pm1\pm5$
Total background	$1152 \pm 24 \pm 130$	$190\pm9\pm26$	$264 \pm 11 \pm 30$