Diboson Results from the Tevatron

William C. Parker

U.W. Madison

on behalf of the CDF and D0 Collaborations

Multi-Boson Interactions Workshop Brookhaven National Laboratory, October 28-30, 2014

• Massive diboson cross sections

- ► $ZZ \rightarrow III'I', II\nu\nu$
- $WZ \rightarrow III\nu$
- $WW \rightarrow II \nu \nu$
- Tevatron diboson cross sections
- Anomalous gauge coupling limits
 - $WZ \rightarrow III\nu$
 - $WZ \rightarrow I\nu jj$
 - $WW \rightarrow II \nu \nu$
 - Tevatron anomalous trilinear gauge coupling limits
 - $WW\gamma\gamma$ coupling limits

The Tevatron

- 1987-2011
- 6.9 km ring
- $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV
- Peak luminosity $4 \times 10^{32} cm^{-2} s^{-1}$
- Two experiments: D0 and CDF
- Integrated luminosity $\sim 10 {\rm fb}^{-1}$
 - \sim 8,000 $W\!W
 ightarrow$ $I\!l
 u
 u$ events
 - $\sim 300~ZZ \rightarrow III'I'/II \nu \nu$ events

Physics Motivation

 Massive diboson production is an important test of standard model predictions

Process	σ (pb)
WW	11.7 ± 0.7
WZ	$\textbf{3.5}\pm\textbf{0.2}$
ZZ	1.4 ± 0.1

- Dibosons are sensitive to trilinear and quartic gauge couplings
- New physics could appear as deviations from predicted diboson cross sections
- Background to Higgs analyses and new physics searches

 $ZZ \rightarrow III'I'$

- Final states: eeee, $ee\mu\mu$, $\mu\mu\mu\mu$
- Small cross section
- Very clean final state
- ZZ production is a background for $ZH \rightarrow Zb\overline{b}$, $H \rightarrow ZZ$

- D0:
- 4 / with $p_T > 15$ GeV
- $M_{II} > 30$ GeV for both pairs
- OS pairs for muons
- All *eeee* pairs considered with no charge requirement

- CDF:
- 4 / with $p_T(l_{1(i)}) > 20(10)$ GeV
- Minimize $|M_{II} M_Z|$ for both pairs: 76 < $M_{II,1}$ < 106 GeV, 41 < $M_{II,2}$ < 141 GeV
- All leptons OS same flavor pairs

$ZZ \rightarrow III'I'$ Analysis and Result

- Instrumental background: Z/γ^* with two additional misidentified jets/photons
- Fake rate from jet-trigger events
- Applied to 2/3 lepton + jets events
- D0: Looser acceptance, separate lepton categories

 $ZZ \rightarrow II \nu \nu$ Selection

- D0: Two OS / of $p_T > 15$ GeV or $p_T(I_{1(2)}) > 20(10)$ GeV
- $60 < m_{II} < 120 \,\,{
 m GeV}$
- \leq 2 jets with $E_{\mathcal{T}} > 15$ GeV
- No additional isolated jets/EM clusters/ μ s/ τ s

- Similar CDF selection:

- $76 < m_{II} < 106 \text{ GeV}$
- No jets with $\Delta \phi(j,Z) \geq \pi/2$

• DY and WW validated in $m_{II}/\not{\!\! E}_T^{A_X}$ and $e - \mu$ control regions

- Modeling: Pythia
- D0: reweight p_T^{\parallel} according to RESBOS(DY), POWHEG(VV)
- CDF: MC@NLO(WW), Baur($W\gamma$)
- W+jets: data-driven
- Neural networks based on kinematic inputs to enhance separation of signal and background

$ZZ \rightarrow I I \nu \nu$ Result and Combination

^aFor $60 < m_{ll} < 120 \text{ GeV}$

CDF: PRD 89, 112001 (2014); D0: PRD 85, 112005 (2012)

$WZ \rightarrow III\nu$ Selection

• D0:

- Exactly three l (one OS) of $p_T > 15$ GeV or $p_T(l_{1,2,3}) > 20, 15, 10$ GeV
- $60 < m_{II} < 120$
- $\not\!\!\!E_T' > 20 \, GeV$

•
$$|m_{3l} - m_Z| > |m_{ll} - m_Z|$$

- CDF:
- Exactly three *l* (one OS) of $p_T(l_{1,i}) > 20, 10 \text{ GeV}$
- $76 < m_{II} < 106$

$WZ \rightarrow III\nu$ Analysis

- Minimal background in signal region: ZZ, Z + jets
- D0: fit to m_T^W
- CDF: neural network trained on kinematics and lepton types

	$\sigma(par{p} ightarrow WZ)~({ m pb})~(III u)$
CDF	$3.93^{+0.60}_{-0.53}(\text{stat})^{+0.59}_{-0.46}(\text{syst})$
MCFM	3.50 ± 0.21
D0 ^a	$4.50 \pm 0.61(\text{stat})^{+0.16}_{-0.25}(\text{syst})$
MCFM ^a	3.21 ± 0.19

• TGC limits shown below

```
CDF: PRD 86 031104 (2012);
D0: PRD 85 112005 (2012)
```

^aFor $60 < m_{II} < 120 \text{ GeV}$

Tevatron Diboson

 $WW \rightarrow II \nu \nu$

- Highest-statistics massive diboson process
- Multiple significant backgrounds
- Background to and extension of $H \rightarrow WW$ analyses

$WW \rightarrow II \nu \nu$ Selection

•
$$p_T^{l_{1(2)}} > 15(10)$$
 GeV

- ► ee/µµ:
- ▶ *m*_{*ll*} > 15 GeV
- Cut on anti-DY BDT
- ► e µ:
- $p_T^{l_{e(\mu)}} > 15(10) \text{ GeV}$
- Cut on $M_T(I, \not\in_T)$, M_{T_2}

- CDF:
- $E_T(p_T)^{l_{1(2)}} > 20(10)$ GeV
- $E_T(p_T)_{l_2} > 10 \text{ GeV}$
- Cut-based DY rejection
 - ▶ Veto 80 < m_{II} < 99</p>
 - Require \$\mathcal{E}_T\$ transverse to nearby object
 - Relaxed for $e \mu$

$WW \rightarrow II \nu \nu$ Analysis - D0

- Modeling: Pythia(VV), Alpgen (tt
 , V+jets), data-driven (multijet)
- Second set of BDT's trained to discriminate *WW*
- Additional variables: lepton quality, *b*-tagging
- Trained separately for *ee*, *eμ*, μμ, and for 0 and 1 jet events

$WW \rightarrow I l \nu \nu$ Analysis - CDF

- Modeling: Pythia(tt̄, DY, VZ), Alpgen(DY+jets, WW), Baur(Wγ), data-driven(W+jets)
- Neural networks: 0, 1, 2+jets
- 1-jet region binned by $E_T(j_1)$
- Veto events with 2+jets,
 - 1 + b-tags

 $WW \rightarrow II \nu \nu$ Result

- D0 observed $\sigma(p\bar{p} \rightarrow WW) = 11.6 \pm 0.4 ({\rm stat}) \pm 0.6 ({\rm syst})$
- Expected(MCFM) $\sigma(p\bar{p} \rightarrow WW) = 11.3 \pm 0.7$
- Measured precision equivalent to NLO theory

D0: PRD 88 052006 (2013)

CDF: PRD coming soon

Will Parker, UW Madison

	Di	boson C	ross Sectio	ns Summarv
W ess	$\sigma_{CDF}(pb)$	$\sigma_{D0}(\mathrm{pb})$	Prediction(pb)	$Data(fb^{-1})$
WW	14.0 ± 1.6	11.6 ± 0.7	11.7 ± 0.7	9.7
WZ	3.9 ± 0.8	-	3.5 ± 0.2	7.1
WZ^1	-	4.5 ± 0.6	3.2 ± 0.2	8.6
ZZ	1.0 ± 0.3	1.3 ± 0.3	1.4 ± 0.1	9.7,8.6-9.8

- Leptonic final states
- WW and ZZ measurements exploit full dataset
- Consistent with Standard Model predictions

	CDF								
	Obs.	Exp.	$E_T(\gamma)$						
Process	$\sigma(pb)$	$\sigma(pb)$	(GeV)	$ \eta_{\gamma} $	$\Delta R_{\gamma,I/\gamma}$	$Data(fb^{-1})$			
$\gamma\gamma$	12.3 ± 3.5	11.6 ± 0.3	17,15	1	0.4	9.5			
$W(ightarrow l u)\gamma$	18.0 ± 2.8	19.3 ± 1.4	7	1.1	0.7	1.1			
$Z(\rightarrow II)\gamma$	4.6 ± 0.5	4.5 ± 0.3	7	1.1	0.7	1.1-2.0			
		D0							
	Obs.	Exp.	$E_T(\gamma)$						
Process	$\sigma(pb)$	$\sigma(pb)$	(GeV)	$ \eta_{\gamma} $	$\Delta R_{\gamma,I/\gamma}$	$Data(fb^{-1})$			
$\gamma\gamma$	9.4 ± 0.4	7.9	18,17	0.9	0.4	8.5			
$W(\rightarrow I u)\gamma$	7.6 ± 0.7	7.6 ± 0.2	15	2.5	0.4	4.2			
$Z(\rightarrow II)\gamma$	1.1 ± 0.1	1.1	10	1.1	0.4	6.5			

 $^{1}60 < m_{\parallel} < 120 \text{ GeV}$

Will Parker, UW Madison

BNL, October 28^{th} , 2014

Additional references in backup

- aTGCs would increase production cross section at high p_T^V
- Events reweighted according to aTGC simulation
- Fit to p_T^{\parallel} distribution
- D0: Combination limit described below

LEP Parameterization Δg_1^2 $\Delta \kappa_Z$ D0 (-0.077, 0.089)(-0.055, 0.117)(-0.08, 0.10)(-0.08, 0.20)CDF (-0.39, 0.90)

aTGC limits from
$$WZ \rightarrow III\nu$$
 ($\Lambda = 2$ TeV)

 $WW + WZ \rightarrow I\nu jj$

- D0:
- Single $e(\mu)$ with $p_T > 15(20)$ GeV
- $\not\!\!E_T > 20 \text{ GeV}$
- 2 or 3 jets with $p_T > 20$ GeV
- $55 < m_{jj} < 110 \text{ GeV}$
- $M_T^{l\nu} > 40 0.5 \not\!\!\! E_T$
- Reweight p_T^{jj} distribution to account for aTGCs
- Fit SM and aTGC to data
- CDF: Ongoing work on $I\nu jj$ in backup

D0 W	W/WZ ightarrow I u jj
$\Delta \kappa_{\gamma}$	(-0.27,0.37)
λ	(-0.075,0.080)
Δg_1^Z	(-0.071,0.137)

- Previous WW analyses $(1.1 3.6 \text{fb}^{-1})$
- Limits set by lepton p_T likelihood
- Additional eff. \times accept. uncertainty as a function of $p_T(I)$
- D0: 2D, combination

 $\Delta \kappa_{\sim}$ Δg_1^2 λ D0 (-0.54, 0.83) (-0.14, 0.18) (-0.14, 0.30)CDF (-0.57, 0.65) (-0.14, 0.15) (-0.22, 0.30)

aTGC limits from $WW \rightarrow I l \nu \nu$ ($\Lambda = 2 \text{ TeV}$)

Trilinear Gauge Coupling Limits

- D0 combination
- $WZ \rightarrow III\nu$ (8.6 fb⁻¹)
- $WW + WZ \rightarrow l\nu jj$ (4.3 + 1.1 fb⁻¹)
- $W\gamma \rightarrow l\nu\gamma$ (4.9 fb⁻¹)
- $WW \rightarrow II\nu\nu$ (1 fb⁻¹)
- p^{II}_T, p^{IJ}_T, E^γ_T, p^{II}_T distributions reweighted for effects of aTGCs
- SM and aTGC fit to data simultaneously in all samples

 $WWZ/WW\gamma$ aTGC limits ($\Lambda = 2$ TeV)

	, ,	(,	
WW,WZ,W γ	λ	Δg_1^Z	$\Delta \kappa_Z$	$\Delta \kappa_{\gamma}$
D0 Comb.(8.6 fb ⁻¹)	(-0.036,0.044)	(-0.034,0.084)	-	(-0.158,0.255)
CDF $WW(3.6 \text{ fb}^{-1})$	(-0.14,0.15)	(-0.22,0.30)	-	(-0.57,0.65)
CDF $WZ(7.1 \text{ fb}^{-1})$	(-0.08,0.10)	(-0.08,0.20)	(-0.39,0.90)	-

D0 WW/WZ/ZZ combination comparable to LHC limits

CDF WW: PRL 104, 201801 (2010); CDF WZ: PRD 86, 081104 (2012);

D0 Comb.: Phys.Lett B718, 451 (2012)

Will Parker, UW Madison

BNL, October 28th, 2014

Trilinear Gauge Coupling Limits

CDF Z_{\gamma}: PRL 107 051802 (2011); D0 Z_{\gamma}: PRD 85, 052001 (2012);

D0 ZZ: PRL 100, 131801 (2008)

Will Parker, UW Madison

BNL, October 28th, 2014

- WWγγ Quartic Gauge Coupling (QGC) allowed in Standard Model
- $p\bar{p} \rightarrow p\bar{p}WW$
- Small cross section in Standard Model: 3 fb - 0.1 events expected after selection
- Sensitive to anomalous QGCs described by a_0^W , a_C^W
- Similar effects expected from a_0^W , a_C^W

$\gamma\gamma \rightarrow WW$ Selection

- Two OS electrons
- $p_T^{e1} > 15$ GeV, $p_T^{e2} > 10$ GV, $M_{ee} > 15$ GeV
- At least one in central cal., other in central or end
- Central jet veto (p_T > 20 GeV, |η| < 2.4) to require EWK scattering topology
- Dominant background: Z+jets

Signal: $a_0^W/\Lambda^2 = 5 \times 10^{-4}$ GeV⁻², no form factor

$WW\gamma\gamma$ Analysis

 Selection BDT against Z/γ*+jets based on kinematics - most significant input: (M_T(ee, ∉_T))

- Dominant backgrounds after selection: W/Z+jets, diboson
- Second BDT for aQGC signal also uses electron reconstruction quality

D0: PRD 88, 012005 (2013)

- Massive diboson production: test of Standard Model predictions
- All SM diboson cross sections have been measured, making use of up to the full CDF and D0 datasets
- Experimental precision equal to NLO theoretical predictions reached in high statistics diboson modes
- Limits have been set on aTGC's and $WW\gamma\gamma$ coupling
- $WW/WZ/W\gamma$ combination limits comparable to LHC
- All results are consistent with the Standard Model

 $ZZ \rightarrow 4I$ Systematics

_

CDF	
Syst	%
Higher Order	2.5
PDF	2.7
Luminosity	5.9
Lepton ID	3.6
Drell-Yan	50

D0	
Syst	%
Trigger eff.	1
CC/EC e ID	3.7
ICR E ID	6
μ ID	3.2
Instrum. Bkg.	10-50
tī	20
PDF	2.5
$\sigma(ZZ)$	7.1
ZZ pT	1-7
ZZ _{migr.} p _T	40
Scale	2

 $ZZ \rightarrow II \nu \nu$ NN inputs

- CDF NN Inputs
- *p*_T(*l*₁)
- ∉^{sig}T
- m_{ll}
- p_T(*II*)
- Δφ(II)
- N_{jets}
- $\Delta \phi(\vec{E_T}, \vec{p_T})$

- D0 NN Inputs
- *p*_T(*l*₁)
- *p*_T(*l*₂)
- ∉_T
- $\cos \theta^*_\eta$ CM scattering angle
- Δφ(I₁, II)
- $(m_{II} m_Z)/\sigma(m_{II})$

$ZZ \rightarrow II \nu \nu$ CDF Systematics

Source	ZZ	WW	WZ	tī	DY	$W\gamma$	W + jets
Theoretical cross section		6	6	10		10	
Run-dependence modeling				10			
PDF modeling	2.7	1.9	2.7	2.1		2.2	
Higher-order amplitudes	5		5	10		5	
Luminosity	5.9	5.9	5.9	5.9		5.9	
Photon conversion modeling						10	
Jet-energy scale	2.0	1.6	3.4	5.3		2.0	
Jet-to-lepton misidentification rate							16
Lepton identification efficiency	3	3	3	3			
Trigger efficiency	2	2	2	2			
DY normalization					10.2		
DY mismodeling					\checkmark		

$ZZ \rightarrow I l \nu \nu$ D0 Systematics

	$N_{\rm bgd}$	$A_{\ell\ell}$	A_{sig}	$A_{\ell\ell}/A_{\rm sig}$	$\sigma_{ m sig}$
$L_{\rm inst}$ profile	1.5	4.5	5.2	0.7	1.8
Vertex z profile	1.0	1.3	0.7	0.6	2.5
$Z/\gamma^* p_T$	0.0	0.0	0.0	0.0	0.6
Diboson p_T	2.6	0.0	1.8	1.8	3.7
Jet energy scale	1.1	0.8	1.5	0.8	1.8
Jet energy resol.	0.9	0.1	0.1	0.0	1.8
IC jet treatment	0.2	0.2	0.4	0.2	0.6
Jet reconstr.	0.5	0.3	0.0	0.2	0.0
Trkjet reconst.	1.5	0.0	1.1	1.2	3.1
Electron p_T scale	0.4	0.0	0.0	0.0	0.6
Electron p_T resol.	1.0	0.1	0.5	0.4	1.8
Electron p_T tails	1.0	0.0	0.6	0.6	1.2
Muon p_T scale	0.1	0.0	0.0	0.0	0.0
Muon p_T resol.	0.5	0.1	0.5	0.5	0.6
Muon p_T tails	0.1	0.1	0.5	0.4	0.6
Lepton eff. vs p_T	0.0	0.0	0.0	0.0	0.6
Lepton eff. vs η	0.0	0.0	0.0	0.0	0.6
W+jets model.	1.9	0.0	0.0	0.0	0.6
$W\gamma$ model.	3.9	0.0	0.0	0.0	1.8
Systematic	6.0	4.8	6.0	2.6	7.1
Statistical	_	-	_	_	27.0
Stat. \oplus syst.	6.0	4.8	6.0	2.6	27.9

 $WZ \rightarrow III \nu$ CDF Systematics

Syst	%
Lumi	6
PDF	2.1-2.7
НО	10
σ	5-7
γ misID	20
Fake Rate	25
Lep ID	2
Trigger	5.4
Jet modeling	1.2

$WZ \rightarrow III\nu$ D0 Systematics

	$N_{\rm bgd}$	$A_{\ell\ell}$	$A_{\rm sig}$	$A_{\ell\ell}/A_{ m sig}$	$\sigma_{\rm sig}$
L_{inst} profile	4.0	2.4	3.3	0.9	0.2
Vertex z profile	1.6	1.3	0.9	0.4	0.7
$Z/\gamma^* p_T$	0.0	0.0	0.0	0.0	0.2
Diboson p_T	0.1	0.0	0.4	0.4	0.2
Jet energy scale	6.0	0.1	0.3	0.2	1.3
Jet energy resol.	2.2	0.0	0.0	0.0	0.2
IC jet treatment	1.1	0.0	0.0	0.0	0.2
Electron p_T scale	0.3	0.0	0.1	0.1	0.2
Electron p_T resol.	1.0	0.1	0.0	0.0	0.2
Electron p_T tails	0.1	0.0	0.3	0.4	0.2
Muon p_T scale	0.1	0.0	0.1	0.1	0.2
Muon p_T resol.	0.9	0.1	0.1	0.0	0.2
Muon p_T tails	1.0	0.2	0.4	0.2	0.2
Track reconstr.	0.1	0.7	1.1	0.3	0.7
Muon reconstr.	0.2	0.3	0.5	0.2	0.2
Electron reconstr.	0.2	0.2	0.2	0.0	0.2
Z/γ^* +jets model.	17.7	0.0	0.0	0.0	2.5
Systematic	19.4	2.9	3.7	1.2	3.1
Statistical	-	-	-		13.2
Stat. \oplus syst.	19.4	2.9	3.7	1.2	13.6

 $WZ \rightarrow III \nu$ CDF NN Inputs

- Only most significant inputs:
- ∉_T
- $\Delta \phi(W, \vec{E_T})$
- ΣE_T
- Lepton flavor combination

$WW \rightarrow I l \nu \nu$ CDF Systematics

WW(II $\nu\nu$) Cross Section				CDF	CDF Run II Preliminary		
Uncertainty Source	WW	WZ	ZZ	tī	DY	$W\gamma$	W+jet
Cross Section		6.0%	6.0%	4.3%*	$(0 - 5.0\%^*)$		
Acceptance							
∉ _T Modeling					(19.0-26.0%*)		
Higher-order Diagrams		10.0%	10.0%			10.0%*	
tī QCD				2.7%			
Conversion Modeling						6.8%	
Scale	(23.7 [†] -3.8%)						
PDF Modeling	(0.8-1.8%)						
Jet Energy Scale	(21.5 [†] -4.7%) (13.2 [†] -6.4%)	(13.3 [†] -3.5%)	(12.9 [†] -26.8%)	(28.7 [†] -10.2%) (22.0 [†] -3.5%)	
b-tag veto				(0.0-3.9%)			
Lepton ID Efficiencies	3.8%	3.8%	3.8%	3.8%	(0 - 3.8%)		
Trigger Efficiencies	2.0%	2.0%	2.0%	2.0%	(0 - 2.0%)		
Jet Fake Rate							(17.2-19.0%)
Luminosity	5.9%	5.9%	5.9%	5.9%	(0 - 5.9%)		

 * indicates uncorrelated systematic. † indicates anticorrelated systematic.

 $WW \rightarrow I I \nu \nu$ D0 Systematics

D0						
Syst	%					
σ	4-7					
Multijet	30					
W+jets	15-30					
Z+jets	2-15					
$\not\!$	5-19					
Shape						
JES	4					
Jet Res.	0.5					
Jet ID	2					
Jet Vtx.	2					
b-tag	j2					
W+jets Model	10-30					
$p_T(V)$ Model	j1					

$WW \rightarrow I I \nu \nu$ CDF NN Inputs

- 0 Jets:
- SumEtLeptonsMet
- *p*_T(*l*₂)
- LRWW
- m_{ll}
- Δφ(I, I)
- $M_t(\Pi, \not\in_T)$
- p_T(l₁)
- E(I₁)
- $\Delta R(I, I)$

- 1 Jet:
- SumEtLeptonsMet
- p_T(l₂)
- ∉_{T,rel}
- *E*(*I*₁)
- $\Delta R(I, I)$
- $M_t(\Pi, \not\in_T)$
- *p*_T(*l*₁)
- m_{ll}

- 2+jets:
- SumEtLeptonsMet
- *p*_T(*j*1 + *j*2)
- ∉_{T,rel}
- p_T(l₂)
- ∉^{sig}T
- Aplanarity
- △R(I, I)
- SumEtLeptonsJets
- $\cos(\Delta \phi(I,I)_{CM})$
- $\Delta \phi(II, \not\in_T)$
- SumEtJetsMet
- m_{II}
- p_T(l₁)

Tevatron Diboson

$WW \rightarrow I l \nu \nu$ D0 BDT Inputs

as

The following input variables are used for the DY-BDT:

- (i) lepton p_T
- (ii) invariant mass of the leptons, $M_{\ell_1 \ell_2}$
- (iii) azimuthal opening angle between the two leptons, $\Delta\phi(\ell_1,\ell_2)$
- (iv) separation in η , ϕ space between the two leptons,

$$\Delta R(\ell_1, \ell_2) = \sqrt{(\eta_{\ell_1} - \eta_{\ell_2})^2 + (\phi_{\ell_1} - \phi_{\ell_2})^2}$$

- (v) minimal transverse mass, M_T^{\min}
- (vi) extended transverse mass, M_{T2}
- (vii) missing transverse energy, $\not\!\!\!E_T$

- (x) special missing transverse energy, $\vec{k}_T^{\text{special}}$, defined for object ζ , which corresponds to either the nearest lepton or jet in the event relative to the direction of the \vec{k}_T :

$$\mathbf{\not{k}}_{T}^{\text{special}} = \begin{cases} \mathbf{\not{k}}_{T}, & \text{if } \Delta \phi(\mathbf{\not{k}}_{T}, \zeta) > \pi/2 \\ \mathbf{\not{k}}_{T} \times \sin[\Delta \phi(\mathbf{\not{k}}_{T}, \zeta)], & \text{otherwise} \end{cases}$$

(xi) jet p_T

$$\mathbf{\not{k}}_{T}^{\text{scaled}} = \frac{\mathbf{\not{k}}_{T}}{\sqrt{\sum_{\text{jets}} [\Delta E^{\text{jet}} \cdot \sin\theta^{\text{jet}} \cdot \cos\Delta\phi(\text{jet}, \mathbf{\not{k}}_{T})]^{2}}}$$

where ΔE^{jet} is a measure of jet energy resolution and is proportional to $\sqrt{E^{\text{jet}}}$; the fluctuation in the measurement of jet energy in the transverse plane can be approximated by the quantity $\Delta E^{\text{jet}} \cdot \sin \theta^{\text{jet}}$ [6]

- (xiv) absolute value of the pseudorapidity difference between the jets, $|\Delta \eta(j_1, j_2)|$, where j_1 and j_2 are the two highest- p_T jets in the event
- (xv) invariant mass of the two jets, $M(j_1, j_2)$.

 $WZ/ZZ \rightarrow I\nu jj$

- Same topology as $W\!H
 ightarrow bar{b}$
- Small production cross section
- Substantial backgrounds
- $\not\!\!\!E_T > 20 \text{ GeV}$
- $M_T^{l\nu} > 40 0.5 \not\!\! E_T$
- Random forest classifier
- Similar CDF analysis:
- 2 jets, fit to M_{jj}

- Single $e(\mu)$, $p_T > 15(20)$ GeV
- 2-3 jets, $p_T > 20$ GeV
- Separated by NN b-tags

 $\begin{array}{c} \sigma(p\bar{p} \rightarrow WZ) \ (\text{pb}) \ (I) \\ \hline \text{CDF}(WZ+ZZ) & 5.1^{+3.6}_{-2.5} \\ \text{D0} & 3.3^{+4.1}_{-3.0} \\ \text{MCFM} & 3.5 \pm 0.3 \end{array}$

$WZ/ZZ \rightarrow I\nu jj(j)$

- \bullet Including a $3^{\rm rd}$ jet improves acceptance by 1/3
- Exactly three jets, $E_T(j_1, j_2, j_3) > 25, 15, 15 \text{ GeV}$
- $M_T^W > 10(30)$ GeV for $\mu(e)$
- Resolution of *M*(*j*₁, *j*, 2) degraded by third jet

$WZ/ZZ \rightarrow I\nu jj(j)$

- Jets ordered by bness(tag) or *E*_T(notag)
- Train four neural networks to select each correct jet combination
- $MJJ_{COMB} = (J_1 + J_2, J_1 + J_2 + J_3, J_1 + J_3, J_2 + J_3)$
- Apply successive cuts to each distribution to select *MJJ_{COMB}*
- Including 3-jet events with this technique improves expected p-value to extract WZ/ZZ signal from 0.75σ to 1.05σ

CDF: Nucl. Instrum. Meth. A738 (2014)

Additional References

CDF $\gamma\gamma$: PRL 110, 101801 (2013) D0 $\gamma\gamma$: Phys.Lett B725, 6 (2013) D0 $W\gamma$: PRL 107, 241803 (2011) CDF $Z\gamma$: PRL 107, 051802 (2011) D0 $Z\gamma$: PRD 85, 052001 (2012)