Multibosons from the Parton Shower

Brock Tweedie PITT PACC, University of Pittsburgh @ BNL Multiboson Interactions Workshop 30 October 2014

* Work in progress with J Chen & T Han

A Future pp Collider, E ~ 100 TeV

A Multiboson Factory

At 100 TeV:

WW	σ= 770 pb	
WWW	σ=2 pb	
WWZ	σ= Ι.6 pb	
wwww	σ=15 fb	

WWWZ $\sigma=20 \text{ fb}$

....

Mangano

WW Scattering

Parameter	\sqrt{s}	Luminosity	pileup	5σ	95% CL
	[TeV]	$[fb^{-1}]$		$[{\rm TeV^{-4}}]$	$[\text{TeV}^{-4}]$
f_{T1}/Λ^4	14	300	50	0.2(0.4)	0.1(0.2)
f_{T1}/Λ^4	14	3000	140	0.1 (0.2)	0.06(0.1)
f_{T1}/Λ^4	14	3000	0	0.1 (0.2)	0.06(0.1)
f_{T1}/Λ^4	100	1000	40	0.001 (0.001)	$0.0004 \ (0.0004)$
f_{T1}/Λ^4	100	3000	263	0.001 (0.001)	0.0008(0.0008)
f_{T1}/Λ^4	100	3000	0	0.001 (0.001)	0.0008 (0.0008)

Low (10 Oct talk @ VLHC meeting)

How Weak Bosons are Made

At the hard process scale

Hierarchically below the hard process scale...EW parton shower

Electroweak Sudakovs

Dittmaier, Huss, Speckner (1210.0438)

Virtual weak corrections to exclusive dijets at LHC14

Christiansen & Sjöstrand (1401.5238)

LO rate minus real W/Z emission events

also Moretti, Nolten, Ross (hep-ph/0606201), many other related works

Example: WZ+Jet @ 100 TeV

p⊤(j) > 100 GeV

p⊤(j) > 3.3 TeV

* assumed lumi = 1 ab⁻¹

Example: WZ+Jet @ 100 TeV

"Shower" Vs "Prompt"

p_T(leading V)

p_T(subleading V)

H⊤(jets + V's)

* Including splittings with photons

Electroweak Splittings

... With many hidden Goldstone equivalencies with longitudinal bosons

* Including splittings with photons

Integrated Quark Splitting Rates

Averaged over flavors & helicities, summed over W & Z

$$\mathcal{P}(q \to V_T q) \simeq (3 \times 10^{-3}) \left[\log \frac{E}{m_{\rm EW}} \right]^2 \quad \Rightarrow \quad \mathcal{P}(1 \text{ TeV}) \simeq 1.7\%, \quad \mathcal{P}(10 \text{ TeV}) \simeq 7\%$$
$$\mathcal{P}(q \to V_L q) \stackrel{\bigstar}{\simeq} (2 \times 10^{-3}) \log \frac{E}{m_{\rm EW}} \quad \Rightarrow \quad \mathcal{P}(1 \text{ TeV}) \simeq 0.5\%, \quad \mathcal{P}(10 \text{ TeV}) \simeq 1\%$$

* Massless fermions here...massive (top/bottom) will also have "equivalent Goldstone" contributions

* Both use dipole-like qq→qqV splittings

... And with Leptons/Neutrinos

Use radiated Z-boson to determine full neutrino 3-vector direction (and test for W' chirality)

> Hook & Katz (1407.2607) also Rizzo (1403.5465)

Integrated Transverse Vector Splitting Rates

$$\mathcal{P}(V_T \to V_T V_T) \simeq (0.01) \left[\log \frac{E}{m_{\rm EW}} \right]^2 \quad \Rightarrow \quad \mathcal{P}(1 \text{ TeV}) \simeq 6\%, \quad \mathcal{P}(10 \text{ TeV}) \simeq 22\%$$

$$\mathcal{P}(V_T \to V_T V_L) \simeq (0.01) \log \frac{E}{m_{\rm EW}} \quad \Rightarrow \quad \mathcal{P}(1 \text{ TeV}) \simeq 2\%, \quad \mathcal{P}(10 \text{ TeV}) \simeq 5\%$$

$$\mathcal{P}(V_T \to V_L V_L) \simeq (4 \times 10^{-4}) \log \frac{E}{m_{\rm EW}} \quad \Rightarrow \quad \mathcal{P}(1 \text{ TeV}) \simeq 0.1\%, \quad \mathcal{P}(10 \text{ TeV}) \simeq 0.2\%$$

$$\mathcal{P}(V_T \to f\bar{f}) \simeq (0.04) \log \frac{E}{m_{\rm EW}} \quad \Rightarrow \quad \mathcal{P}(1 \text{ TeV}) \simeq 10\%, \quad \mathcal{P}(10 \text{ TeV}) \simeq 20\%$$

$$\mathcal{P}(V_T \to V_L h) \simeq (4 \times 10^{-4}) \log \frac{E}{m_{\rm EW}} \Rightarrow \mathcal{P}(1 \text{ TeV}) \simeq 0.1\%, \quad \mathcal{P}(10 \text{ TeV}) \simeq 0.2\%$$

 $\mathcal{P}(V_T \to V_T h) \simeq (3 \times 10^{-4}) \quad \Rightarrow \quad \mathcal{P}(1 \text{ TeV}) \simeq 0.03\%, \quad \mathcal{P}(10 \text{ TeV}) \simeq 0.03\%$

Integrated Longitudinal Vector Splitting Rates

 $\mathcal{P}(V_L \to V_T V_L) \sim (2 \times 10^{-3}) \Rightarrow \mathcal{P}(1 \text{ TeV}) \sim 1\%, \quad \mathcal{P}(10 \text{ TeV}) \sim 4\%$

 $\mathcal{P}(V_L \to V_T h) \sim (2 \times 10^{-3}) \Rightarrow \mathcal{P}(1 \text{ TeV}) \sim 1\%, \quad \mathcal{P}(10 \text{ TeV}) \sim 4\%$

Plus others.....

Our Shower Program

- PYTHIA6-like virtuality-ordered
 - collinear approximation, no coherence between dipoles
- Polarized splittings
- Massive splitting functions
 - amplitudes and phase space
- Secondary splittings reweighted to account for virtual mother's production rate

- e.g., q → W(on-shell) q ≠ q → W(off-shell) q

• Only FSR (so far)

$$\frac{d\mathcal{P}(a \to bc)}{dz_b \, d\log Q_a^2} = \frac{1}{16\pi^2} \frac{z_b z_c E_a(|\vec{p}_a| + |\vec{p}_b|)}{E_b E_c} \frac{Q_a^2}{(Q_a^2 - m_a^2)^2} |\mathcal{A}(a \to bc)|^2 \qquad z_{a,b} \equiv \frac{|\vec{p}_{a,b}|}{|\vec{p}_a| + |\vec{p}_b|}$$

WZ+Jet Revisited

MadGraph

Pythia8 W/Z+jet + EW-Shower

Diboson Inside One Jet

$u_L(10 \text{ TeV}) \rightarrow d_LW^+Z$

ΔR(Z, rest of jet)

р_т(W) / р_т(j)

* R=1.0 anti-kT jet, W/Z as partons

Back-of-the Envelope Applications

- W_TW_T production at O(10 TeV)
 - $W_TW_T \rightarrow W_TW_T$ scattering: potentially O(1) showering probability
 - KK graviton: corrections up to "many 10's of %"
- W_LW_L production at O(10 TeV)
 - − $W_LW_L \rightarrow W_LW_L/hh$, Z'→Z_Lh, W'→W_Lh/W_LZ_L: O(10%) showering probability
- SM V+jets and diboson
 - there are still events up at $p_T \sim 10$ TeV, with O(10's of %) splitting rates
 - a laboratory for studying weak splittings (analog of QCD c1980)
 - splittings to Higgs would be particularly fun (though rare)
- Insert your favorite multi-TeV model...

What's Next?

- ISR
- Top/bottom
- W/Z splittings to fermions
- Complete longitudinal splittings
- γ/Z interference
- Vector decays
- Interleave with QCD (already available)
- As a plug-in to an existing program such as PYTHIA...matching??

Summary

- At a 100 TeV pp collider, EW bosons are "the new gluons"
 - high-p_T multiboson production from showering processes becomes appreciable
 - sizable EW shower corrections to >1 TeV processes

Summary

- At a 100 TeV pp collider, EW bosons are "the new gluons"
 - high-p_T multiboson production from showering processes becomes appreciable
 - sizable EW shower corrections to >1 TeV processes
- We are in the process of constructing a *complete* EW parton shower
 - the standard "quick and dirty" way to capture leading-log effects
 - V→VV splittings for the first time, plus various Higgs and "Goldstone equivalent" processes
 - very new, and full implications still being worked out
 - initial benchmark tests against MadGraph look reasonable

Summary

- At a 100 TeV pp collider, EW bosons are "the new gluons"
 - high-p_T multiboson production from showering processes becomes appreciable
 - sizable EW shower corrections to >1 TeV processes
- We are in the process of constructing a *complete* EW parton shower
 - the standard "quick and dirty" way to capture leading-log effects
 - V→VV splittings for the first time, plus various Higgs and "Goldstone equivalent" processes
 - very new, and full implications still being worked out
 - initial benchmark tests against MadGraph look reasonable
- A new regime to study multiboson physics!