Reaching out to the Semi-Inclusive Reactions Subgroup

Update from EICUG Software Working Group Update from Center for Nuclear Femtography

EIC Center at Jefferson Lab Markus Diefenthaler

Update from EICUG Software Working Group

Develop

Workflow environment for EIC simulations

• to use (tools, documentation, support) and

Support

to grow with user input (direction, documentation, tools)

Involvement from EICUG

e.g. benchmark processes, detector design, tracking algorithms, MC reweighting, SSA analysis

Point of entry

The EICUG has formed a Software Working Group that collaborates with EIC Software initiatives and other experts in NP and HEP on detector and physics simulations for the EIC. The short-term goal of the working group is to meet in FY20 the requirements for common tools and documentation in the EICUG. The current work focusses on a common Geant4 infrastructure for the EIC that allows geometry exchange between the eRHIC and JLEIC concepts.

JupyterLab

The Software Working Group has adapted JupyterLab as a collaborative workspace to further develop EIC Science, to examine detector requirements, and to work on detector designs and concepts. JupyterLab is a web-based interactive analysis environment to create and share documents that contain the analysis code, the narrative of the analysis including graphics and equations, and visualizations of the analysis results. This will allow the EICUG not only to pursue simulations in a manner that is accessible, consistent, and reproducible to the EICUG as a whole, but also to build a collection of analyses and analysis tools in the fully extensible and modular JupyterLab environment. A quick start tutorial for fast simulations is available on the website for EIC Software.

Important links

Mailing list	eicug-software@eicug.org (subscribe via Google Group)
Repository	http://gitlab.com/eic
Website	https://software.eicug.org

Collaborative workspace for EIC simulations

JupyterLab

web-based interactive analysis environment

(←) > C' @	i localhost:8888/lab	þ							110% •	·· 🖂 🧑 🕁		⊻ ∥\	口 公	Ξ
₽	Most Visited 📄 ToRead 📄 H 📄	Tracking 🛅 EveryRead	LG M	C 🛅 G 🛅 Tr 🛅 Gist 🗎	GitLab 🛅 JLab	🛅 EIC 🛅 Jupy	B D E	🖿 VIS (KyleC	DS Estimating N	. 🔘 Kalman-a	ınd-Bayesian 🕻	Dimmersive Math	💮 Femtograp	hy 2018	»
С	File Edit View Run Ke	ernel Tabs Settings	Help												
	+ 83	± C	🖪 Laund 🗙	■ 10_ru × ■ 11_ej ×		凤 06_o¦ ×	🖪 07_g₁ ×	🗏 08_uį ×	🔝 Launi 🗙	🗈 01_ei ×	□ 02_N ×	⊡ 03_o ×	□ 04_g ×	🗅 05_r	ί×
_	A		8 + %	🗇 🗋 🕨 🔳 C	Code ~								I	ython 3	0
1.	Name 🔺	Last Modified													^
-1	🗖 data	3 hours ago	[3]:	<pre>tree = uproot.open(' tracks df = tree.pan</pre>	/data/eventle	ess_output.ro o". "n h". "n	ot')['event] x b". "nv b"	.ess']['tree' '. "pz b"])	']						
æ	• 📕 06_open_charm.ipynb	40 minutes ago				·)) -) P-1- 1/							
-	• 🖪 07_geometry.ipynb	37 minutes ago	[10]:	<pre>tracks_df['vertical_i tracks_df['beninests'</pre>	angle'] = np.a	arcsin(tracks	_df['py_b']/	'tracks_df['r	p_b'])						
a	• 🔲 08_uproot_neutron_an	31 minutes ago		<pre>v_angle = tracks_df["</pre>	racks_df.pdg_	_b == 2212].v	ks_dt[px_b ertical_ang]]/tracks_dt[le.values	[pz_o])						
	• 💻 10_run_ejana.ipynb	29 minutes ago		h_angle = tracks_df[racks_df.pdg_	_b == 2212].h	orizontal_ar	gle.values							
	• 🖪 11_ejana_interface.ipynb	27 minutes ago		Horizontal angle (v): <i>(</i> (t)	$= \arctan(\frac{p_x}{p_x})$										
	• 🔳 12_config.ipynb	26 minutes ago			p_z										
	• 📃 widget_example.ipynb	3 hours ago		Vertical angle (v): $\alpha_{v} =$	$arcsin(\frac{p_y}{m})$										
	01_eic-smear-config.cpp	4 hours ago		vertical angle (j). =v	p										
	02_NNPSS11-2-nobuil	5 hours ago	(11):	fig. ax = plt.subplo	s ()										
	03_open_charm_sm.root	5 hours ago		h, xedges, yedges, in	n = ax.hist2d([h_angle, v_a	ngle,								
	04_geometryJLEIC.gdml	5 hours ago		<pre>bins=[np.arange(norm=matplotlib.</pre>	200,101,5)/10	00,np.arange	(-150,151,5)	/1000],							
	05_root.example	a day ago		<pre>plt.colorbar(im, ax=</pre>	ax)										
	🗅 output.root	30 minutes ago		<pre>plt.xlabel('Horizont:</pre>	al angle (x) [angle (v) [ra	[rad]') adl')									
				<pre>plt.title('Neutrons a</pre>	angle distribu	ition')									
				<pre>ax.set_axisbelow(True) plt.grid(True)</pre>	e)										
				plt.show()											
				Neutro	ns angle distribu	ution									
				0.15											
				0.10			- 10 ³								
				De oor											
				(Å)	1998 C		- 10 ²								
				al 0.00	2 - 2										
				-0.05	145	•									
				Ver	1 A A		101								
				-0.10											
				-0.15	10 -0.05 0.00	0.05 0.10	100								

Horizontal angle (x) [rad]

Jupyter Notebooks

• writing analysis code

visualization of results

• narrative of the analysis

The high luminosity at the EIC would allow measurements of open charm production with much higher rates than at HERA and COMPASS, extending the kinematic coverage to large $x_B > 0.1$ and rare processes such as high- p_T jets. Heavy quark production with electromagnetic probes could for the first time be measured on nuclear targets and used to study the gluonic structure of nuclei and the propagation of heavy quarks through cold nuclear matter with full control of the initial state.

JupyterLab environment

bridge to modern data science, e.g.,

- Nature 563, 145-146 (2018): "Why Jupyter is data scientists' computational notebook of choice"
- more than three million Jupyter Notebooks publicly available on GitHub
- collaborative workspace to create and share Jupyter Notebooks
- web-based interactive analysis environment accessible, consistent, reproducible analyses
- fully extensible and modular build a collection of analyses and analysis tools

Jupyter Notebooks

• writing analysis code

[4]:	<pre>jana.plugin('hepmc_reader') \ .plugin('jana', nevents=10000, output='hepmc_sm.root') \ .plugin('eic_smear', detector='jleic') \ .plugin('open_charm')</pre>	
[4]:	eJana configured plugins: hepmc_reader,eic_smear,open_charm	Python
[5]:	<pre>jana.source('/data/herwig6_20k.hepmc')</pre>	
[5]:	eJana configured plugins: hepmc_reader,eic_smear,open_charm sources: /data/herwig6_20k.hepmc	Root/C++
[6]:	jana.run()	
	Total events processed: 10001 (~ 10.0 kevt)	

• visualization of results

• narrative of the analysis

Open charm

The high luminosity at the EIC would allow measurements of open charm production with much higher rates than at HERA and COMPASS, extending the kinematic coverage to large $x_B > 0.1$ and rare processes such as high- r_T jets. Heavy quark production with electromagnetic probes could for the first time be measured on nuclear targets and used to study the gluonic structure of nuclei and the propagation of heavy quarks through cold nuclear matter with full control of the initial state.

 $D^{0} \bigoplus_{n=1}^{n} \pi^{*} \qquad \pi^{*} \bigvee_{k=1}^{n} K^{-} \pi^{*} \bigvee_{k=1}^{k} K^{-} \pi^{*} \bigvee_{k=1}^{k} \phi$

Modular design

Escaping complexity scaling trap

- provide interfaces to internal layers
- interaction between layers must be clear

Modularity each layer must be replaceable

simple	JupyterLab web interface
moderate	analysis scripts, python
complex	eJANA, plugins, C++
expert	JANA, eic-smear, fun4all, ROOT, Geant4

1.	iana run()
	Jana. I un()
	Total events processed: 10001 (~ 10.0 kevt)
	▶ Full log
	▼ Run command
	ejana
	-Pplugins=beagle_reader,vmeson,event_writer
	-Pnthreads=1
	-Pnevents=10000
	-Poutput=beagle.root
	/data/beagle_eD.txt
	-Piana:debug plugin loading=1

Support

http://eicug.slack.com/

EICUG Slack workspace with software-support channel

Develop

Workflow environment for EIC simulations

• to use (tools, documentation, support) and

Support

to grow with user input (direction, documentation, tools)

Semi-Inclusive Reactions Subgroup

Engage with us

- Make your MC samples available
- Integrate your software into our workflow environment
- Send us requests

Update from Center for Nuclear Femtography Next-generation Visual Analysis Workspace for Multi-Dimensional Nuclear Femtography Data

Next-Generation Visual Analysis Workspace for SIDIS

Project by Virginia Tech and Jefferson Lab Explore new visualization methods for Nuclear Physics

First approach Can we use **Semantic Interactions** to explore SIDIS regions?

Exploring SIDIS regions

Current fragmentation Collinear factorization

 y_h

Target region

Fracture functions

Toy example: Particle zoo

Create thumbnails from SIDIS events

Kinematic studies based on semantic interactions

Of interest for YR studies?

Jefferson Lab