Jets for 3D imaging

Miguel Arratia

Jet/HF YR meeting February 26th, 2020

Rev. Mod. Phys. 86, 1037 (2014)

Jet for 3D-imaging

- DIS jets are a novel tool for 3D imaging.
- Complementary and more direct way for EIC flagship measurements.
- Potential for unique jet program, unlike any previous collider or fixed-target experiment.
- Could 3D imaging benefit from jet substructure technology?

Direct measurement of quark Sivers effect with jets

Liu et al. PRL 122 192003 (2019)

FIG. 3. The single transverse spin asymmetry as a function of $\Delta \phi = \phi_J - \phi_\ell - \pi$ for different lepton transverse momenta $k_{\ell\perp} = 7$, 10, and 15 GeV, respectively, which illustrates the transverse momentum dependence of the quark Sivers function.

"The advantage of the lepton-jet correlation as compared to the standard SIDIS processes is that it does not involve TMD fragmentation functions.".

Optimal operating point for 3D-imaging

Optimal configuration for luminosity:

Struck quark

Jets, R=1.0

Focus on the large x

Statistical projection for Sivers effect with electron-jet correlations

- Projections assume 100 fb-1, 70% polarization, 50% efficiency, sqrt(2) penalty factor due to statistical extraction.
- Excellent prospects for "direct" measurement of Sivers effect, most systematics cancel completely in the ratio

x-dependence of quark Sivers

• Excellent kinematic coverage, precise data

Transversity, h(x), with jets

distribution of transversely polarized quarks inside a transversely polarized nucleon

"Collins azimuthal asymmetries of hadron production inside jets Phys. Lett. B 774, 635 (2017), Kang et al.

"The transverse momentum distribution of hadrons within jets" JHEP 1711 (2017) 068, Kang et al.

STAR Collaboration, Phys. Rev. D 97, 032004 (2018)

- Jet measurement crucial to factorize initial and final state TMD effects.
- At EIC, we could explore this observable with much higher precision, kinematic control. Tests of TMD evolution & universality; complements di-hadron measurements.

Hadrons-in jet @ EIC

Plot by Youqi Song

• Plenty of statistics!

Hadron-in-jet statistical projection

pp at RHIC

ep at EIC

- Most systematics cancel in the ratio....
- We will have sensitivity to TMD evolution effects.

Covering the entire x-range relevant for transversity

Jet substructure, the key to novel TMD studies?

- "Jet axes" studies from LHC research will likely flourish at EIC to study TMD fragmentation and TMD evolution e.g. Cal et al. arXiv:1911.06840, Niell et al. 10.1007/JHEP04(2017)020
- Grooming: new tool to control hadronization for better access to TMD PDFs:

 Gutierrez-Reyes et al. JHEP 08 (2019) 161. Yiannis Makris et al. JHEP 07 (2018) 167.
- Going from single-hadrons to jets studies might expand the field tremendously (sounds familiar?)

Some thoughts on detector requirements

- PID & tracking
- Hermetic coverage
- Jet uncertainties

PID requirements:

- Mandatory for this measurement.
 "Charged hadron" would not work.
- Charged pions separation from Kaons and protons up to ~30 GeV
- EMCAL granularity for pi0

Jets are excellent proxies for quark kinematics

Arratia et al. arXiv:1912.05931

Jets are excellent proxies for quark kinematics but...

$$R=1.0$$

R=0.7

R=0.5

 $0.1 < y < 0.85, 10 < p_T^{electron} < 30 \text{ GeV/c}$ $|\phi^{jet} - \phi^e - \pi| < 0.4, Q^2 > 100 \text{ GeV}^2$

 $0.1 < y < 0.85, 10 < p_T^{electron} < 30 \text{ GeV/c}$ $|\phi^{jet} - \phi^e - \pi| < 0.4, Q^2 > 100 \text{ GeV}^2$

- Smaller R leads to larger ambiguity at low momentum. At HERA, the use of R=1.0 lead to percent-level "hadronization correction"
- Parton-to-jet matching is leading uncertainty at low pT in STAR hadron-in-jet measurement Phys. Rev. D 97, 032004 (2018)8

Jet uncertainties

- JES uncertainty cancels completely in ratio, but appears in x-axis.
 JES uncertainty ~5-10% should be OK. (~1% was achieved at HERA).
- JER uncertainty cancels in the ratio. JER value likely dictated by tracking, which is needed for hadrons in range ~[-1.0, +3.5].
- Note that jet energy is at most ~60 GeV. Forward HCAL with 50%/sqrt(E) + 10% likely enough.
- Hermetic coverage might end up being more important to control systematics for asymmetry measurements.

Summary

- Studies with jets at EIC will be unlike any previous collider (even HERA!). Key studies include: electron-jet correlations (**Sivers**), jet fragmentation (**Transversity** et al.) and jet substructure (**new!**)
- Jets for 3D imaging is an excellent opportunity for the convergence of the collider and fixed-target community at the EIC.
- We have a lot of overlap and common goals with the SIDIS group.

- Just before the Berkeley YR meeting,
- We'll have more details soon.

Backup slides

HERA experiments did require high p_T in the Breit Frame We need an orthogonal approach at EIC

Figure 1: Deep-inelastic *ep* scattering at different orders in α_s : (a) Born contribution to inclusive NC DIS $(O(\alpha_{\rm em}^2))$, (b) photon-gluon fusion $(O(\alpha_{\rm em}^2\alpha_s))$, (c) QCD Compton scattering $(O(\alpha_{\rm em}^2\alpha_s))$ and (d) a trijet process $O(\alpha_{\rm em}^2\alpha_s^2)$.

23

Instead of Breit frame, we'll use lepton frame following:

Lepton-Jet Correlations in Deep Inelastic Scattering at the Electron-Ion Collider

Xiaohui Liu, Felix Ringer, Werner Vogelsang, and Feng Yuan Phys. Rev. Lett. **122**, 192003 – Published 15 May 2019

We focus on large transverse momentum lepton-jet production in the center of mass (c.m.) frame of the incoming lepton and nucleon, see Fig. 1,

$$\frac{d^5 \sigma(\ell p \to \ell' J)}{dy_\ell d^2 k_{\ell \perp} d^2 q_{\perp}} = \sigma_0 \int d^2 k_{\perp} d^2 \lambda_{\perp} x f_q(x, k_{\perp}, \zeta_c, \mu_F) \times H_{\text{TMD}}(Q, \mu_F) S_J(\lambda_{\perp}, \mu_F) \, \delta^{(2)}(q_{\perp} - k_{\perp} - \lambda_{\perp}) .$$

FIG. 1. Lepton-jet correlation for the tomography of the nucleon or nucleus at the EIC.

Simulation parameters (for 3D imaging of proton)

- Pythia8 e-p DIS, DIRE parton shower (angular ordered)
- $E^{proton} = 275 \text{ GeV}$, $E^{electron} = 10 \text{ GeV}$
- Event cuts: 0.1 < y < 0.85, $Q^2 > 25 \text{ GeV}^2$
- Jets are reconstructed with the anti- k_T algorithm with R = 1.0 using FastJet
- Particle cuts: $|\eta^{part}| < 4.5, p_T^{part} > 0.25 \text{ GeV}$
- No radiative corrections yet.
- No detector response yet.

We are using the lab frame, which is trivially related to the lepton-nucleon frame

FIG. 1. Lepton-jet correlation for the tomography of the nucleon or nucleus at the EIC. *Liu et al. PRL* 122 192003

$$Q^{2} = -\hat{t} = \sqrt{s} p_{T}^{e} e^{-y_{e}}$$

$$\hat{u} = \sqrt{s} x p_{T}^{e} e^{y_{e}}$$
₂₅

e.g. Jets with soft-drop grooming,

"Probing Transverse-Momentum Distributions with Groomed Jets" JHEP 08 (2019) 161, Gutierrez-Reyes et al.

"Probing Transverse-Momentum Dependent Evolution with Groomed jets" JHEP 07 (2018) 167, Yiannis Makris et al.

Figure 7. The NLL and NNLL TMD spectra for groomed jets in DIS for EIC (left: $\sqrt{100}$ GeV) and HERA (right: $\sqrt{s} = 318$ GeV) kinematics. The cross section are integrated in $y = Q^2/(xs)$ and