PMT noise

Andrea Scarpelli 02/27/2020

Introduction

- We observed quite important noise level on the latest calibration runs taken between January and February 2020
- More difficult SPE calibration
- Other subsystems have recorded anomalous noise levels
 - Checking PMT noise might also help investigating the source

Sample considered

RUN	DATE	LASER SYSTEM	HV	CRYO
212	11/21/1019	OFF	ON	N/A
468	01/24/2020	ON	ON	OFF
1240	02/26/2020	OFF	OFF	ON

• All three runs are related to WW and WE boards and contain only noise. Baseline is subtracted using the mean over the full 10 us window

November 2019 (Run 212)

Power

January 2020 (Run 468)

February 2020 (Run 1240)

Board: WW-TOP-B Channel: 1

- Relevant frequencies in the PMT signal composition are always multiples of 20 MHz, with relevant amplitudes
- Plot obtained from the average of 100 events
- NB: Y scale difference between three plots!!

 Relevant importance of frequency changes from channel to channel

Compare RMS variation

 Compare RMS variation on each run o board WW-TOP-B

Summary

- Noise on the PMTs is caused by frequencies mutiples of 20 MHz
 - When Laser system is on noise tends to be 30% larger
 - Different channels have different nosie
- RMS variations between channels are significative too
 - Might be related to the different importance of the pickup frequencies on that channel.
 - No clear space correlation has been identified, although some fluctuations seem smaller on certain boards and larger on others
- IDEAS...

RMS variation per channel (run 1240)

