Letter of Intent
RHICf-II experiment in Run 24

BNL NPP 2020 PAC Meeting
September 10th, 2020
Yuji Goto (RIKEN)
For the RHICf-II Collaboration
Introduction

• In this LoI, we propose a second run for RHICf in 2024 (RHICf-II).
 • PAC recommendation in 2019
 • The prospects for taking additional RHICf data in future pp, pA, and AA runs should also be explored.

• We may need a request of dedicated beam time with special β^* and polarization direction similarly to our run in 2017, and special $p + A$ collisions.

• It will have a large impact on the central detector BUR.
RHICf-II Collaboration

- Y. Goto, I. Nakagawa, R. Seidl (RIKEN)
- B. Hong, M.H. Kim (Korea Univ.)
- K. Tanida (JAEA)
- T. Chujo (Tsukuba Univ.) ← New
- Y. Itow, H. Menjo (Nagoya Univ.)
- T. Sako (ICRR, Univ. of Tokyo)
- K. Kasahara (Shibaura Tech.)
- O. Adriani, L. Bonechi, R. D’Alessandro (INFN Firenze)
- A. Tricomi (INFN Catania)
Physics motivation

• Cosmic-ray study
 • Cross section measurement to understand ultra-high energy cosmic rays

• Asymmetry measurement
 • To understand the hadronic collision mechanism based on QCD
Cross section measurement

- Majority of energy flow from hadronic collisions concentrated in the very forward region, but reaction mechanism insufficiently understood there
 - Uncertainty to understand air-shower from ultra-high energy cosmic rays
 - Improvement of high-energy collision models based on measurement essential

- Feynman scaling
 - Energy-independent x_F & p_T distribution of the cross section of very forward particle production
 - Wider p_T coverage at RHIC energy (limited at LHC low energy collision)

LHCf results of π^0 production cross section at $\sqrt{s}=7\text{TeV}$ and 2.76TeV

Transverse asymmetry measurement

- A_N (transverse single-spin asymmetry) measurement

 \[
 A_N = \frac{d\sigma_{\text{Left}} - d\sigma_{\text{Right}}}{d\sigma_{\text{Left}} + d\sigma_{\text{Right}}}
 \]

 - Azimuthal angle modulation

- Large A_N for forward hadron production

 - $1 < \eta < 4$, similar results in wide \sqrt{s}

- TMD (Transverse Momentum Dependent) function and higher-twist function in pQCD regime

 - Initial-state effect or “Sivers” effect
 - Final-state effect or “Collins” effect

- Hard scattering and/or non-perturbative effect?
Run 17 operation

- EM calorimeter (RHICf detector) installed in front of the ZDC+SMD of the STAR experiment

- Two position-sensitive sampling calorimeters
 - TS (small tower): 20mm x 20mm
 - TL (large tower): 40mm x 40mm
 - Tungsten absorber (44 X_0, 1.6 λ_{int})
 - 16 GSO sampling layers
 - 4 XY pairs of GSO-bar position layers
Run 17 operation

- June 24 – 27 physics data acquisition
 - $\beta^* = 8m$, radial polarization
 - 27.7 hours, $\sim 110M$ events, ~ 700 nb$^{-1}$
- 3 detector positions: TL center / TS center / Top position
Run 17 results

• \(\pi^0 \) asymmetry
 • Transverse single-spin asymmetry for very forward neutral pion production in polarized p+p collisions at \(\sqrt{s} = 510 \) GeV
 • Research News
 • Asymmetry \(\sim 0 \) backward & forward \(p_T < 0.07 \) GeV/c
Run 17 results

- π^0 asymmetry
 - Comparison with high $p_T > 0.5$ GeV/c data of the past experiments
 - Nearly the same large asymmetry is reached at low $p_T < 0.2$ GeV/c
 - Contribution of other mechanisms, diffraction and resonance, may provide a hint to the mystery
Run 17 results

- Other analyses ongoing
 - π^0 & neutron cross section analysis
 - Neutron asymmetry (RHICf + ZDC)
 - Combined analysis with STAR detectors
 - Event type categorization
 - Diffraction + resonance tagging with STAR + RHICf combined data analysis
 - Event type, multiplicity (FMS) dependence of cross section & asymmetry to be obtained
New topics at RHICf-II

• p + A collisions
 • Measurement of nuclear effect (p+A / p+p)
• Strong A-dependence of the neutron asymmetry
 • Measured at PHENIX in Run 15
 • Phys. Rev. Lett. 120, 022001 (2018)
 • UPC vs hadronic component
• A-dependence of the π⁰ asymmetry
 • Correlation between asymmetries of forward neutron and π⁰
• p + Oxygen collision
 • Ideal condition for cosmic-ray interaction studies measuring π⁰, neutron, photon, K⁰_S
New topics at RHICf-II

- Large acceptance detector
 - 8cm x 18cm
 - For more particles: K^0_S and Λ

- $K^0_S \rightarrow 2\pi^0 \rightarrow 4\gamma$ (B.R. 30.7%)
 - $0.2 \, K^0_S /\text{sec} = 10^4 \, K^0_S\text{s in 14 hours operation}$

- $\Lambda \rightarrow n + \pi^0 \rightarrow n + 2\gamma$ (B.R. 35.9%)
 - $12 \, \Lambda /\text{sec} = 10^5 \, \Lambda\text{s in 2.5 hours operation}$

- Geometric acceptance of π^0, K^0_S and Λ
New topics at RHICf-II

- K^0_S for studying impact on the high-energy atmospheric neutrino flux
- Differences in p+p collisions at 200 GeV between models: EPOS-LHC (magenta), QGSJET II-4 (blue), SIBYLL 2.3 (green)
New topics at RHICf-II

Kaons in atm. v productions

IceCube detected astronomical neutrinos. Better understanding of background (Atmospheric neutrinos) is required.

IceCube Preliminary

Atmospheric ν_μ flux

Kaon

D mesons
New topics at RHICf-II

- Asymmetry measurement of K^0_S and Λ
 - Expected statistical uncertainty of asymmetry measurements for π^0, K^0_S, and Λ compared to the RHICf (Run 17) π^0
 - Assuming the similar luminosity
Large acceptance calorimeter

- We’ll transfer ALICE FoCal-E technology for building an approx. 8cm x 18cm detector to be used at RHIC in 2024
 - Finalize the design of the detector in 2021
 - Construction in 2022-2023 by RIKEN budget + external fund in Japan
- The detector may have enough radiation hardness to work for a small β^* and normal luminosity
 - pad sensor to be tested in this winter with a small neutron source facility in RIKEN
ALICE FoCal-E

- Led by Tsukuba Univ. group
- Tungsten absorber
- Low granularity (LG) silicon pad for energy measurement
 - $\sigma_E / E = 25\% / \sqrt{E} \text{ (GeV)} \oplus 2\%$ for photon energy resolution (simulation)
- High granularity (HG) silicon pixel (CMOS-MAPS) for accurate position measurement
ALICE FoCal-E

- Space restriction at RHICf
- Readout electronics based on HGCROC ASIC (CMS)
 - Readout electronics & DAQ integration to the central detector system
 - Working with Grenoble group who is a leader of the HGCROC ASIC development
RHICf-II request

- 2022 at STAR not available
 - ALICE FoCal not available yet
 - LHCf detector not available due to conflict with LHC Run 3 in 2023
 - p+p 510 GeV

- 2024 at sPHENIX or STAR

- Dedicated beam use – 2 weeks
 - Large β^* and radial polarization
 - 1 week for pol-p + A at 200 GeV
 - A = O, Al, Au, …
 - 1 week for pol-p + pol-p at 200 GeV
 - Comparison with p+A for A dependence
 - Comparison with 510 GeV (2017 run) for \sqrt{s} dependence
 - K^0_S and Λ

- Or parasitic beam use
 - The detector may have enough radiation hardness to work for a small β^* and normal luminosity
 - We also need sufficient DAQ and trigger capability for high luminosity operation
Summary

• In this LoI, we propose a second run for RHICf in 2024 (RHICf-II).
• We may need a request of dedicated beam time with special β^* and polarization direction similarly to our run in 2017, and special $p + A$ collisions.
• It will have a large impact on the central detector BUR.
• We are still considering whether we need dedicated beam use or we can run parasitically.
• We will discuss collaboration with sPHENIX and STAR to locate our detector.
Backup Slides
RHICf detector

- Two position-sensitive sampling calorimeters
 - TS (small tower): 20mm x 20mm
 - TL (large tower): 40mm x 40mm
 - Tungsten absorber \((44 \, X_0, \, 1.6 \, \lambda_{\text{int}})\)
 - 16 GSO sampling layers
 - 4 XY pairs of GSO-bar position layers (MAPMT readout)
To do

• Event type categorization

• Diffraction + resonance tagging with STAR + RHICf combined data analysis
 • Resonance with STAR Roman Pot
 • Diffraction with STAR forward detectors (FMS, BBC, VPD)
 • Or no activity

• Event type, multiplicity (FMS) dependence of cross section & asymmetry to be obtained
 • For more information to study production mechanism