Update on BES-II progress Mini-PAC meeting Helen Caines - Yale STAR

Huge thanks to Zhangbu whose term as (co)Spokesperson of STAR ended May 1

Looking forward to working for the next 3 years with Lijuan

Last days of Run-20a

BES-II: going into Run-20

					"Good'	,
	Beam Energy	$\sqrt{s_{NN}}$ (GeV)	$\mu_{\rm B} \ ({\rm MeV})$	Run Time	Number Ev	vents
	(GeV/nucleon)				requested /collected	
	9.8	19.6	205	4.5 weeks	400M	582M
_	7.3	14.5	260	5.5 weeks	300M	324M
P	5.75	11.5	315	9.5 weeks	230M	
Kunzu	4.55	9.1	370	9.5 weeks	160M	
	3.85	7.7	420	12 weeks	100M	
Г	31.2	7.7 (FXT)	420	2 days	100M	51M
	19.5	6.2 (FXT)	487	2 days	100M	
Run20	13.5	5.2 (FXT)	541	2 days	100M	
	9.8	4.5 (FXT)	589	2 days	100M	
	7.3	3.9 (FXT)	633	2 days	100M	53M
	5.75	3.5 (FXT)	666	2 days	100M	
	4.55	3.2 (FXT)	699	2 days	100M	201M
	3.85	3.0 (FXT)	721	2 days	100M	3.7M-

Top priorities for Run-20: $\sqrt{s_{NN}} = 11.5$ and 9.1 GeV in collider mode $\sqrt{s_{NN}} = 7.7-3.5$ GeV in FXT mode

Run-20 summary

Started 2-person shifts on 11/25 Cosmic data take started 11/26 First beam 12/5

Energy	Start	Finish	First Run	Last Run	HLTgood	Target
11.5 GeV	Dec 10 th	Feb 24 th	20056032	21055017	235 M	230 M 🗸
31.2 FXT(7.7)Jan 28 th	Jan 29 th	21028011	21029037	112.5 M	100 M 🗸
9.8 FXT (4.5) Jan29 th	Feb 1 st	21029051	21032016	108 M	100 M 🗸
19.5 FXT(6.2) Feb 1 st	Feb 2 nd	21032049	21033017	118 M	100 M
13.5 FXT (5.2)Feb 2 nd	Feb 3 rd	21033026	21034013	103 M	100 M
7.3 FXT (3.9) Feb 4 th	Feb 5 th	21035003	21036013	117 M	100 M
5.75 FXT (3.5)Feb 13 th	Feb 14 th	21044023	21045011	115.6 M	100 M 🗸
9.2 GeV	Feb 24 th	March 20th	21055032		45 M	160 M

Data taking interleaved with LEReC and CeC running Run ended early - hoping to return to Run-20b

Were on target to reach all goals

Details of $\sqrt{s_{NN}} = 11.5$ GeV data-taking

	2010	predicted	achieved
Average HLTgood event rate (Hz)	30	60-80	140
Data taking (hours per day)	12	15	14-18
Fill Length (minutes)	20	40	25
DAQ Rate at start of fill (Hz)	140	250	550
Ratio of HLTgood/triggers (%)			40%

Dramatic improvements during the run

Running conditions exceeded predictions

Optimized RHIC and STAR operations

Details of $\sqrt{s_{NN}} = 9.2$ GeV data-taking

	2019	predicted	Achieved
Average HLTgood event rate (Hz)	6.2	33-53	36
Data taking (hours per day)	8	14	15
Fill Length (minutes)	45	30	45
DAQ Rate at start of fill (Hz)	60	160	700
Ratio of HLTgood/triggers (%)	10%	25%	18%

Running conditions: Dramatic improvements compared to last year

Average statistics (and still improving): 30 Hz good event rate 14 hours/day 1.6 M good events/day

In: 21029018; Event: 34357; OFL.Trg.IDs: 770000,770002,770003,770004,770007,770005,770006,34; B: -0.5015; EvtTim Wed Jan 29 2020 06:48:54 GMT-0500 (Eastern Standard Time)

Trig.ID: 770000 = epde-or-bbce-or-vpde-tof1; Trig.ID: 770002 = epde-tof1; Trig.ID: 770003 = bbce-tof1; Trig.ID: 770004 = vpde-tof1; Trig.ID: 770007 = epde-or-bbce-or-vpde-tof1-etof; Trig.ID: 770005 = hlt_fixedTargetCood; Trig.ID: 770006 = hlt_fixedTargetMonitor; Trig.ID: 34 = mbtakenctr;

STAR Collaboration (c) 2013-2019, comments: Dmitry Arkhipkin arkhipkin@bnl.gov

FXT running

Single beam (12 bunch yellow beam) - long stores Sustained clean (good event rate> 70%) and high rate (~1.5 kHz) Trigger and scalar rates feedback were crucial for beam steering

	HLT Good (M)	with EToF (M)
31.2 GeV	113.5	101.7
19.5 GeV	119.2	80.4
13.5 GeV	103.1	88.9
9.8 GeV	108.9	72.7
7.3 GeV	114.8	106.4
5.75 GeV	114.3	99.8

All goals (including eTOF event goals) reached or surpassed

BES-II: Preliminary analyses

plane related studies

Identify and reject "pile up": Centrality and Glauber fit completed for 3.0 GeV

Preliminary studies made for other BES-II Run-19 datasets

BES-II: Significant Lambda polarization

BES-II: Identified protons - real data

Identification via dE/dx @3 GeV purity(p_T>1 GeV/c) >95%

Proton coverage similar for FXT 3 GeV and collider at 7.7 GeV

Boxes: kinematic range of previous kurtosis analysis Missing coverage could be recovered with iTPC run

BES-II: Online QA/analyses

Run-20 √s_{NN}=11.5:

Excellent statistics

 $c\tau$ in agreement with PDG

Heavy fragments up to ⁷Be

BES-II: Online hypernuclei

Run-18-20:

At FXT energies

- yields of fragmentation nuclei rising.

Significant increase of observed hypernuclei

After corrections can merge dataset to get precision lifetime measurements.

Can use lifetime can extract yields vs $\sqrt{s_{NN}}$

Unique studies possible

Summary

- Very successful data collection
 - RHIC performing beyond expectations
 - No major detector or operations issues
 - eTOF working well in Run-20
 - Retake early FXT data with eTOF and iTPC present?
 - 11.5 GeV data set completed, exceeded goal
 - 6 FXT data sets completed
 - 9.2 GeV on route to completion by end of run
 - 1/4 events collected so far
- First BES-II results heading to publication
 - More than I was able to show today

Challenging goals

- Challenging Goals: need
 - all the **luminosity** increase and optimization from the machine
 - efficient data taking to maximize yield
- Many energy settings to cover: timing and trigger setup
- Frequent changes between physics data taking and development: minimize overhead with machine operation and data taking
- Tracking the goal with "effective good event": HLT good event rates with z vertex in ±70cm and ±150 cm (with assumed efficiency for physics 30% in 70-150cm)

 $\sqrt{s_{NN}} = 11.5 \text{ GeV}$

- Beam from Tandem for smaller emittance. 28 MHz RF (h=363) concurrently with 9MHz for longitudinal focusing and reducing debunching
- Continuous increase of luminosity during the run
 - tune ("working point") change/optimization
 - AGS intensity limit increase by 20% (8- 8.8 -9.6*10⁹ Au ion per cycle)
 - dynamic working point (injection, store) to count for intensity/space-charge dependence
 - store length optimization: 30m 25m
- "Effective good event" rates ~1.22 * rates in good event rates in ±70cm

- Au from EBIS (large longitudinal emittance for 9MHz RF)
- First LEReC in operation for physics
- AGS bunch 4-1 merge (12-3) for higher bunch intensity
- Luminosity improvement and optimization
 - β squeeze 4.5 3.5 3 meter (in 0-15-30 min) during store (with cooling)
 - 9MHz RF voltage ramping down 180kV 120kV during store for better lifetime and cooling
 - new (lower) working point and compatibility with cooling: under development
 - vertex z fine adjustment (cogging)
- "Effective good event" rates ~1.29 * rates in good event rates in ±70cm

9.2 GeV data taking

hours_perday_mb_hlt-effective.txt

FXT and eTOF summary

Energy	HLTgood w/ eTOF	Target w/ eTOF
31.2 FXT	101.7 M	100 M
19.5 FXT	80.4 M	80 M
13.5 FXT	88.9 M	70 M
9.8 FXT	72.7 M	65 M
7.3 FXT	106.4M	50 M
5.75 FXT	99.4 M	70 M

BES-II: Online Hypernuclei

Run-18-20:

Yields increase with decreasing energy. •At low energies of the fixed target program the yields of

the yields of nuclei fragment production is raising. This leads to significant increase of observed hypernuclei (~10 000) and opens new

Event statistics requirements: Collider

Table 7: Event statistics (in millions) needed in the collider part of the BES-II program for various observables. This table updates estimates originally documented in STAR Note 598.

Collision Energy (GeV)	7.7	9.1	11.5	14.5	19.6
$\mu_{\rm B}$ (MeV) in 0-5% central collisions	420	370	315	260	205
Observables					
R_{CP} up to $p_{\rm T} = 5 \ {\rm GeV}/c$	-	-	160	125	92
Elliptic Flow (ϕ mesons)	80	120	160	160	320
Chiral Magnetic Effect	50	50	50	50	50
Directed Flow (protons)	20	30	35	45	50
Azimuthal Femtoscopy (protons)	35	40	50	65	80
Net-Proton Kurtosis	70	85	100	170	340
Dileptons	100	160	230	300	400
$>5\sigma$ Magnetic Field Significance	50	80	110	150	200
Required Number of Events	100	160	230	300	400

Typically factor 20 more than for BES-I

Event statistics requirements: FXT

Table 8: Event statistics (in millions) needed in the fixed-target part of the BES-II program forvarious observables.

$\sqrt{s_{NN}}$ (GeV)	3.0	3.2	3.5	3.9	4.5	5.2	6.2	7.7
Single Beam Energy (GeV)		4.55	5.75	7.3	9.8	13.5	19.5	31.2
$\mu_{\rm B}~({ m MeV})$	721	699	666	633	589	541	487	420
Rapidity y_{CM}	1.06	1.13	1.25	1.37	1.52	1.68	1.87	2.10
Observables								
Elliptic Flow (kaons)	300	150	80	40	20	40	60	80
Chiral Magnetic Effect	70	60	50	50	50	70	80	100
Directed Flow (protons)	20	30	35	45	50	60	70	90
Femtoscopy (tilt angle)	60	50	40	50	65	70	80	100
Net-Proton Kurtosis	36	50	75	125	200	400	950	NA
Multi-strange baryons	300	100	60	40	25	30	50	100
Hypertritons	200	100	80	50	50	60	70	100
Requested Number of Events		100	100	100	100	100	100	100